cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A336590 Numbers k such that k/A008834(k) is squarefree, where A008834(k) is the largest cube dividing k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2020

Keywords

Comments

Numbers such that none of the exponents in their prime factorization is of the form 3*m + 2.
Cohen (1962) proved that for a given number k >= 2 the asymptotic density of numbers whose exponents in their prime factorization are of the forms k*m or k*m + 1 only is zeta(k)/zeta(2). In this sequence k = 3, and therefore its asymptotic density is zeta(3)/zeta(2) = 6*zeta(3)/Pi^2 = 0.7307629694... (A253905).
Also, numbers k whose number of divisors, A000005(k), is not divisible by 3, i.e., complement of A059269.

Examples

			6 is a term since 6 = 2^1 * 3^1 and 1 is not of the form 3*m + 2.
9 is not a term since 9 = 3^2 and 2 is of the form 3*m + 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], Max[Mod[FactorInteger[#][[;;,2]], 3]] < 2 &]

A008833 Largest square dividing n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 16, 1
Offset: 1

Views

Author

Keywords

Comments

The Dirichlet generating function of the arithmetic function of the largest t-th power dividing n is zeta(s)*zeta(t*s-t)/zeta(s*t), here with t=2 and in A008834 and A008835 with t=3 and t=4, respectively. - R. J. Mathar, Feb 19 2011

Crossrefs

Programs

  • Haskell
    a008833 n = head $ filter ((== 0) . (mod n)) $
       reverse $ takeWhile (<= n) $ tail a000290_list
    -- Reinhard Zumkeller, Nov 13 2011
    
  • Maple
    A008833 := proc(n)
        expand(numtheory:-nthpow(n,2)) ;
    end proc:
    seq(A008833(n), n=1..100) ;
  • Mathematica
    a[n_] := First[ Select[ Reverse[ Divisors[n]], IntegerQ[Sqrt[#]]&, 1]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 12 2011 *)
    f[p_, e_] := p^(2*Floor[e/2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jul 07 2020 *)
  • PARI
    A008833(n)=n/core(n) \\ Michael B. Porter, Oct 17 2009
    
  • Python
    from sympy.ntheory.factor_ import core
    def A008833(n): return n//core(n) # Chai Wah Wu, Dec 30 2021

Formula

a(n) = A000188(n)^2 = n/A007913(n). Cf. A019554.
Multiplicative with a(p^e) = p^(2[e/2]). - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(s)*zeta(2s-2)/zeta(2s). - R. J. Mathar, Oct 31 2011
a(n) = A005563(n-1) / A068310(n) for n > 1. - Reinhard Zumkeller, Nov 26 2011
Sum_{k=1..n} a(k) ~ Zeta(3/2) * n^(3/2) / (3*Zeta(3)). - Vaclav Kotesovec, Feb 01 2019
a(A059897(n,k)) = A059897(a(n), a(k)). - Peter Munn, Nov 30 2019
From Ridouane Oudra, May 11 2025: (Start)
a(n) = Sum_{d|n} lambda(d)*d*psi(n/d), where lambda = A008836 and psi = A001615.
a(n) = lambda(n) * Sum_{d|n} lambda(d)*d*phi(n/d).
a(n) = A008836(n) * A358272(n). (End)

A050985 Cubefree part of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 6, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70, 71, 9, 73, 74, 75
Offset: 1

Views

Author

Eric W. Weisstein, Dec 11 1999

Keywords

Comments

This is an unusual sequence in the sense that the 83.2% of the integers that belong to A004709 occur infinitely many times, whereas the remaining 16.8% of the integers that belong to A046099 never occur at all. - Ant King, Sep 22 2013

Crossrefs

Programs

  • Maple
    A050985 := proc(n)
        n/A008834(n) ;
    end proc:
    seq(A050985(n),n=1..40) ; # R. J. Mathar, Dec 08 2015
  • Mathematica
    cf[n_]:=Module[{tr=Transpose[FactorInteger[n]],ex,cb},ex= tr[[2]]- Mod[ tr[[2]],3];cb=Times@@(First[#]^Last[#]&/@Transpose[{tr[[1]], ex}]);n/cb]; Array[cf,75] (* Harvey P. Dale, Jun 03 2012 *)
    f[p_, e_] := p^Mod[e, 3]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    a(n) = my(f=factor(n)); f[,2] = apply(x->(x % 3), f[,2]); factorback(f); \\ Michel Marcus, Jan 06 2019
  • Python
    from operator import mul
    from functools import reduce
    from sympy import factorint
    def A050985(n):
        return 1 if n <=1 else reduce(mul,[p**(e % 3) for p,e in factorint(n).items()])
    # Chai Wah Wu, Feb 04 2015
    

Formula

Multiplicative with p^e -> p^(e mod 3), p prime. - Reinhard Zumkeller, Nov 22 2009
Dirichlet g.f.: zeta(3s)*zeta(s-1)/zeta(3s-3). - R. J. Mathar, Feb 11 2011
a(n) = n/A008834(n). - R. J. Mathar, Dec 08 2015
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / (1890*Zeta(3)). - Vaclav Kotesovec, Feb 08 2019

A053150 Cube root of largest cube dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Henry Bottomley, Feb 28 2000

Keywords

Comments

This can be thought as a "lower 3rd root" of a positive integer. Upper k-th roots were studied by Broughan (2002, 2003, 2006). The sequence of "upper 3rd root" of positive integers is given by A019555. - Petros Hadjicostas, Sep 15 2019

Crossrefs

Cf. A000188 (inner square root), A019554 (outer square root), A019555 (outer third root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Mathematica
    f[list_] := list[[1]]^Quotient[list[[2]], 3]; Table[Apply[Times, Map[f,FactorInteger[n]]], {n, 1, 81}] (* Geoffrey Critzer, Jan 21 2015 *)
    Table[SelectFirst[Reverse@ Divisors@ n, IntegerQ[#^(1/3)] &]^(1/3), {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f[p_, e_] := p^Floor[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    A053150(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= (f[k, 1]^(f[k, 2]\3)); ); m; } \\ Antti Karttunen, Jul 28 2017
    
  • PARI
    a(n) = my(f = factor(n)); for (k=1, #f~, f[k,2] = f[k,2]\3); factorback(f); \\ Michel Marcus, Jul 28 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A053150(n): return prod(p**(q//3) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021

Formula

Multiplicative with a(p^e) = p^[e/3]. - Mitch Harris, Apr 19 2005
a(n) = A008834(n)^(1/3) = sqrt(A000189(n)/A000188(A050985(n))).
Dirichlet g.f.: zeta(3s-1)*zeta(s)/zeta(3s). - R. J. Mathar, Apr 09 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n / (6*zeta(3)) + 3*zeta(2/3) * n^(2/3) / Pi^2. - Vaclav Kotesovec, Jan 31 2019
a(n) = Sum_{d^3|n} phi(d). - Ridouane Oudra, Dec 30 2020
G.f.: Sum_{k>=1} phi(k) * x^(k^3) / (1 - x^(k^3)). - Ilya Gutkovskiy, Aug 20 2021

Extensions

More terms from Antti Karttunen, Jul 28 2017

A008835 Largest 4th power dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 81
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): [ seq( expand(nthpow(i,4)),i=1..200) ];
  • Mathematica
    Max@ Select[Divisors@ #, IntegerQ@ Power[#, 1/4] &] & /@ Range@ 81 (* Michael De Vlieger, Mar 18 2015 *)
    f[p_, e_] := p^(e - Mod[e, 4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 15 2023 *)
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, f[i,2] = 4*(f[i,2]\4);); factorback(f);} \\ Michel Marcus, Mar 16 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A008835(n): return prod(p**(e&-4) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 08 2024

Formula

a(n) = A000188(A000188(n))^4.
Multiplicative with a(p^e) = p^(4[e/4]). - Mitch Harris, Apr 19 2005
Dirichlet g.f.: zeta(s) * zeta(4s-4) / zeta(4s). - Álvar Ibeas, Feb 12 2015
Sum_{k=1..n} a(k) ~ zeta(5/4) * n^(5/4) / (5*zeta(5)) - 45*n/Pi^4. - Vaclav Kotesovec, Feb 03 2019
a(n) = n/A053165(n). - Amiram Eldar, Aug 15 2023
a(n) = A053164(n)^4. - Amiram Eldar, Sep 01 2024

Extensions

Entry improved by comments from Henry Bottomley, Feb 29 2000

A053149 Smallest cube divisible by n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 64, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 64, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648
Offset: 1

Views

Author

Henry Bottomley, Feb 28 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, If[ Divisible[c = k^3, n], Return[c]]]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := p^(e + Mod[3 - e, 3]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
    scdn[n_]:=Module[{c=Ceiling[Surd[n,3]]},While[!Divisible[c^3,n],c++];c^3]; Array[scdn,50] (* Harvey P. Dale, Jun 13 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(f[i,2] + (3-f[i,2])%3));} \\ Amiram Eldar, Oct 27 2022

Formula

a(n) = (n/A000189(n))^3 = A008834(n)*A019554(A050985(n))^3 = n*A050985(n)^2/A000188(A050985(n))^3.
a(n) = n * A048798(n). - Franklin T. Adams-Watters, Apr 08 2009
From Amiram Eldar, Jul 29 2022: (Start)
Multiplicative with a(p^e) = p^(e + ((3-e) mod 3)).
Sum_{n>=1} 1/a(n) = Product_{p prime} ((p^3+2)/(p^3-1)) = 1.655234386560802506... . (End)
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(9)/(4*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A013667*A330596/(4*A002117) = 0.1559906... . - Amiram Eldar, Oct 27 2022

A353897 a(n) is the largest divisor of n whose exponents in its prime factorization are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 16, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 16, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Examples

			a(27) = 9 since 9 = 3^2 is the largest divisor of 27 with an exponent in its prime factorization, 2, that is a power of 2.
		

Crossrefs

Similar sequences: A000265, A007947, A008834, A055071, A350390.

Programs

  • Mathematica
    f[p_, e_] := p^(2^Floor[Log2[e]]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Multiplicative with a(p^e) = p^(2^floor(log_2(e))).
a(n) = n if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c*n^2, where c = 0.4616988732... = (1/2) * Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^(f(k-1)+1))/p^(2*k)), f(k) = 2^floor(log_2(k)) and f(0) = 0.

A062378 n divided by largest cubefree factor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Henry Bottomley, Jun 18 2001

Keywords

Comments

Numerator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), denominator: A055231. - Reinhard Zumkeller, Dec 10 2002

Crossrefs

Cf. A000189, A000578, A007948, A008834, A019555, A048798, A050985, A053149, A053150, A056551, A056552. See A003557 for squares and A062379 for 4th powers.
Differs from A073753 for the first time at n=90, where a(90) = 1, while A073753(90) = 3.

Programs

Formula

a(n) = n / A007948(n).
a(n) = A003557(A003557(n)). - Antti Karttunen, Nov 28 2017
Multiplicative with a(p^e) = p^max(e-2, 0). - Amiram Eldar, Sep 07 2020
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^s - 1/p^(2*s-1) + 1/p^(2*s)). - Amiram Eldar, Dec 07 2023

A056552 Powerfree kernel of cubefree part of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 1, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 3, 5, 26, 1, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 5, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 2, 55, 7, 57, 58, 59, 30, 61, 62, 21, 1, 65, 66, 67, 34, 69, 70, 71, 3, 73, 74, 15, 38, 77
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(32) = 2 because cubefree part of 32 is 4 and powerfree kernel of 4 is 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] :=  p^If[Divisible[e, 3], 0, 1]; a[n_] := Times @@ (f @@@ FactorInteger[ n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, if (frac(f[k,2]/3), f[k,2] = 1, f[k,2] = 0)); factorback(f); \\ Michel Marcus, Feb 28 2019

Formula

a(n) = A007947(A050985(n)) = A019555(A050985(n)) = n/(A053150(n)*A000189(n)) = A019555(n)/A053150(n) = A056551(n)^(1/3).
If n = Product_{j} Pj^Ej then a(n) = Product_{j} Pj^Fj, where Fj = 0 if Ej is 0 or a multiple of 3 and Fj = 1 otherwise.
Multiplicative with a(p^e) = p^(if 3|e, then 0, else 1). - Mitch Harris, Apr 19 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.3480772773... . - Amiram Eldar, Oct 28 2022
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 16 2023

A248762 Greatest cube that divides n!.

Original entry on oeis.org

1, 1, 1, 8, 8, 8, 8, 64, 1728, 1728, 1728, 13824, 13824, 13824, 46656000, 2985984000, 2985984000, 2985984000, 2985984000, 23887872000, 221225582592000, 221225582592000, 221225582592000, 1769804660736000, 221225582592000000, 221225582592000000
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(4) = 8 because 8 divides 24 and if k > 2 then k^3 does not divide 24.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 3; Table[p[m, n], {n, 1, z}]  (* A248762 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248763 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A145642 *)
    gk[n_]:=Select[Divisors[n!],IntegerQ[Surd[#,3]]&]; Max[#]&/@Array[gk,30] (* Harvey P. Dale, Sep 16 2021 *)
    f[p_, e_] := p^(3*Floor[e/3]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
  • PARI
    a(n)=k=ceil((n!/2)^(1/3));while(n!%k^3,k--);k^3
    vector(20,n,a(n)) \\ Derek Orr, Oct 19 2014
    
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(3*(f[i, 2]\3)));} \\ Amiram Eldar, Sep 01 2024

Formula

a(n) = n!/A145642(n).
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A008834(n!).
a(n) = A248763(n)^3. (End)
Showing 1-10 of 16 results. Next