A355263 a(n) = largest-nth-power(n, 3) * radical(n) = A053150(n) * A007947(n), where the largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.
1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 12, 5, 26, 9, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 20, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 18, 55, 28, 57, 58, 59, 30, 61, 62, 21, 8, 65, 66, 67, 34, 69
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(NumberTheory): seq(LargestNthPower(n, 3)*Radical(n), n=1..69);
-
Mathematica
f[p_, e_] := p^(1 + Floor[e/3]); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 13 2022 *)
-
Python
from math import prod from sympy import factorint def A355263(n): return prod(p**(e//3+1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 13 2022
Formula
Multiplicative with a(p^e) = p^(1 + floor(e/3)). - Amiram Eldar, Jul 13 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(5)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 2/p^5 + 1/p^6) = 0.3643121583... . - Amiram Eldar, Nov 13 2022
Comments