cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A212172 Row n of table represents second signature of n: list of exponents >= 2 in canonical prime factorization of n, in nonincreasing order, or 0 if no such exponent exists.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A056170(n) if A056170(n) is positive, or 1 if A056170(n) = 0.
The multiset of exponents >=2 in the prime factorization of n completely determines a(n) for over 20 sequences in the database (see crossreferences). It also determines the fractions A034444(n)/A000005(n) and A037445(n)/A000005(n).
For squarefree numbers, this multiset is { } (the empty multiset). The use of 0 in the table to represent each n with no exponents >=2 in its prime factorization accords with the usual OEIS practice of using 0 to represent nonexistent elements when possible. In comments, the second signature of squarefree numbers will be represented as { }.
For each second signature {S}, there exist values of j and k such that, if the second signature of n is {S}, then A085082(n) is congruent to j modulo k. These values are nontrivial unless {S} = { }. Analogous (but not necessarily identical) values of j and k also exist for each second signature with respect to A088873 and A181796.
Each sequence of integers with a given second signature {S} has a positive density, unlike the analogous sequences for prime signatures. The highest of these densities is 6/Pi^2 = 0.607927... for A005117 ({S} = { }).

Examples

			First rows of table read: 0; 0; 0; 2; 0; 0; 0; 3; 2; 0; 0; 2;...
12 = 2^2*3 has positive exponents 2 and 1 in its canonical prime factorization (1s are often left implicit as exponents). Since only exponents that are 2 or greater appear in a number's second signature, 12's second signature is {2}.
30 = 2*3*5 has no exponents greater than 1 in its prime factorization. The multiset of its exponents >= 2 is { } (the empty multiset), represented in the table with a 0.
72 = 2^3*3^2 has positive exponents 3 and 2 in its prime factorization, as does 108 = 2^2*3^3. Rows 72 and 108 both read {3,2}.
		

Crossrefs

A181800 gives first integer of each second signature. Also see A212171, A212173-A212181, A212642-A212644.
Functions determined by exponents >=2 in the prime factorization of n:
Additive: A046660, A056170.
Other: A007424, A051903 (for n > 1), A056626, A066301, A071325, A072411, A091050, A107078, A185102 (for n > 1), A212180.
Sequences that contain all integers of a specific second signature: A005117 (second signature { }), A060687 ({2}), A048109 ({3}).

Programs

  • Magma
    &cat[IsEmpty(e)select [0]else Reverse(Sort(e))where e is[pe[2]:pe in Factorisation(n)|pe[2]gt 1]:n in[1..102]]; // Jason Kimberley, Jun 13 2012
  • Mathematica
    row[n_] := Select[ FactorInteger[n][[All, 2]], # >= 2 &] /. {} -> 0 /. {k__} -> Sequence[k]; Table[row[n], {n, 1, 100}] (* Jean-François Alcover, Apr 16 2013 *)

Formula

For nonsquarefree n, row n is identical to row A057521(n) of table A212171.

A053150 Cube root of largest cube dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Henry Bottomley, Feb 28 2000

Keywords

Comments

This can be thought as a "lower 3rd root" of a positive integer. Upper k-th roots were studied by Broughan (2002, 2003, 2006). The sequence of "upper 3rd root" of positive integers is given by A019555. - Petros Hadjicostas, Sep 15 2019

Crossrefs

Cf. A000188 (inner square root), A019554 (outer square root), A019555 (outer third root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Mathematica
    f[list_] := list[[1]]^Quotient[list[[2]], 3]; Table[Apply[Times, Map[f,FactorInteger[n]]], {n, 1, 81}] (* Geoffrey Critzer, Jan 21 2015 *)
    Table[SelectFirst[Reverse@ Divisors@ n, IntegerQ[#^(1/3)] &]^(1/3), {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f[p_, e_] := p^Floor[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    A053150(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= (f[k, 1]^(f[k, 2]\3)); ); m; } \\ Antti Karttunen, Jul 28 2017
    
  • PARI
    a(n) = my(f = factor(n)); for (k=1, #f~, f[k,2] = f[k,2]\3); factorback(f); \\ Michel Marcus, Jul 28 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A053150(n): return prod(p**(q//3) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021

Formula

Multiplicative with a(p^e) = p^[e/3]. - Mitch Harris, Apr 19 2005
a(n) = A008834(n)^(1/3) = sqrt(A000189(n)/A000188(A050985(n))).
Dirichlet g.f.: zeta(3s-1)*zeta(s)/zeta(3s). - R. J. Mathar, Apr 09 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n / (6*zeta(3)) + 3*zeta(2/3) * n^(2/3) / Pi^2. - Vaclav Kotesovec, Jan 31 2019
a(n) = Sum_{d^3|n} phi(d). - Ridouane Oudra, Dec 30 2020
G.f.: Sum_{k>=1} phi(k) * x^(k^3) / (1 - x^(k^3)). - Ilya Gutkovskiy, Aug 20 2021

Extensions

More terms from Antti Karttunen, Jul 28 2017

A063775 Number of 4th powers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Henry Bottomley, Aug 16 2001

Keywords

Examples

			a(79) = 1 since 79 is divisible by 1 = 1^4.
a(80) = 2 since 80 is divisible by 1 and 16 = 2^4.
a(81) = 2 since 81 is divisible by 1 and 81 = 3^4.
		

Crossrefs

Cf. A046951 (number of squares), A061704 (number of cubes).

Programs

  • Maple
    seq(coeff(series(add(x^(k^4)/(1-x^(k^4)),k=1..n),x,n+1), x, n), n = 1 .. 120); # Muniru A Asiru, Dec 29 2018
  • Mathematica
    nn = 100;f[list_, i_] := list[[i]];
    Table[DirichletConvolve[f[Boole[Map[IntegerQ[#] &, Map[#^(1/4) &,Range[nn]]]], n],f[Table[1, {nn}], n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 07 2015 *)
    f[p_, e_] := 1 + Floor[e/4]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    { for (n=1, 2000, k=2; a=1; while ((p=k^4) <= n, if (n%p == 0, a++); k++); write("b063775.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 30 2009

Formula

a(n) = A000005(A053164(n)) = A046951(A000188(n)).
Multiplicative with a(p^e) = 1 + floor(e/4).
Dirichlet g.f.: zeta^2(4s)*Product_{primes p} (1 + p^(-s) + p^(-2s) + p^(-3s)). - R. J. Mathar, Jan 11 2012
G.f.: Sum_{k>=1} x^(k^4)/(1 - x^(k^4)). - Ilya Gutkovskiy, Mar 21 2017
Dirichlet g.f.: zeta(s) * zeta(4s). - Álvar Ibeas, Dec 29 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n / 90 + Zeta(1/4) * n^(1/4). - Vaclav Kotesovec, Feb 03 2019

A322885 Number of 3-generated Abelian groups of order n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Álvar Ibeas, Dec 29 2018

Keywords

Comments

Groups generated by fewer than 3 elements are not excluded. The number of Abelian groups with 3 invariant factors is a(n) - A046951(n).
Sum of the first three columns from A249770 (for n > 1).
Dirichlet convolution of A061704 and A010052. Dirichlet convolution of A046951 and A010057.
The number of unordered factorizations of n into biquadratefree power of primes (1 and primes, squares of primes and cubes of primes, A087797). - Amiram Eldar, Jun 12 2025

Crossrefs

Programs

  • Maple
    f:= proc(n) local t;
      mul(round((t[2]+3)^2/12),t=ifactors(n)[2])
    end proc:
    map(f, [$1..200]); # Robert Israel, May 20 2019
  • Mathematica
    a[n_] := Times @@ (Round[(# + 3)^2/12]& /@ FactorInteger[n][[All, 2]]);
    Array[a, 102] (* Jean-François Alcover, Jan 02 2019 *)
  • PARI
    a(n) = vecprod(apply(x -> round((x+3)^2/12), factor(n)[, 2])); \\ Amiram Eldar, Jun 12 2025

Formula

Multiplicative with a(p^e) = A001399(e).
Dirichlet g.f.: zeta(s) * zeta(2s) * zeta(3s).
Sum_{k=1..n} a(k) ~ Pi^2*zeta(3)*n/6 + zeta(1/2)*zeta(3/2)*sqrt(n) + zeta(1/3)*zeta(2/3)*n^(1/3). - Vaclav Kotesovec, Feb 02 2019

A327626 Expansion of Sum_{k>=1} x^(k^3) / (1 - x^(k^3))^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 9, 10, 11, 12, 13, 14, 15, 18, 17, 18, 19, 20, 21, 22, 23, 27, 25, 26, 28, 28, 29, 30, 31, 36, 33, 34, 35, 36, 37, 38, 39, 45, 41, 42, 43, 44, 45, 46, 47, 54, 49, 50, 51, 52, 53, 56, 55, 63, 57, 58, 59, 60, 61, 62, 63, 73, 65, 66, 67, 68, 69, 70, 71, 81, 73, 74, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 19 2019

Keywords

Comments

Sum of divisors d of n such that n/d is a cube.
Inverse Moebius transform of A078429.

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Sum[x^(k^3)/(1 - x^(k^3))^2, {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, # &, IntegerQ[(n/#)^(1/3)] &]; Table[a[n], {n, 1, 75}]
    f[p_, e_] := (p^(e+3) - p^Mod[e, 3])/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 25 2025 *)
  • PARI
    A327626(n) = sumdiv(n,d,ispower(n/d,3)*d); \\ Antti Karttunen, Sep 19 2019

Formula

a(n) = Sum_{d|n} A078429(d).
a(n) = Sum_{d|n} A010057(n/d) * d. Dirichlet convolution of A000027 and A010057.
D.g.f.: zeta(s-1)*zeta(3s). - R. J. Mathar, Jun 05 2020
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 1890. - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = (p^(e+3) - p^(e mod 3))/(p^3-1). - Amiram Eldar, May 25 2025

A013937 a(n) = Sum_{k=1..n} floor(n/k^3).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 0

Views

Author

Keywords

Examples

			a(36) = [36/1]+[36/8]+[36/27]+[36/64]+... = 36+4+1+0+... = 41.
		

Crossrefs

Cf. A005187, A006218, A011371, A013936, A013939 for similar sequences.

Programs

Formula

a(n) = a(n-1)+A061704(n). a(n) = Sum_{k=1..n} floor((n/k)^(1/3)) with asymptotic formula: a(n) = zeta(3)*n+zeta(1/3)*n^(1/3)+O(n^theta) where theta<1/3 and we conjecture that theta=1/4+epsilon is the best possible choice. - Benoit Cloitre, Nov 05 2012
G.f.: (1/(1 - x))*Sum_{k>=1} x^(k^3)/(1 - x^(k^3)). - Ilya Gutkovskiy, Feb 11 2017

Extensions

More terms from Henry Bottomley, Jul 03 2001

A279495 Number of tetrahedral numbers dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2016

Keywords

Comments

Inverse Möbius transform of A023533. - Antti Karttunen, Oct 01 2018
Records are a(1) = 1, a(4) = 2, a(20) = 4, a(120) = 5, a(280) = 6, a(560) = 7, a(840) = 8, a(1680) = 9, a(9240) = 11, a(18480) = 12, a(55440) = 13, a(120120) = 14, a(240240) = 15, a(314160) = 16, a(628320) = 17, a(1441440) = 18, a(2282280) = 19, a(4564560) = 21, a(9129120) = 22, a(13693680) = 23, a(27387360) = 24, a(54774720) = 25, a(68468400) = 26, a(77597520) = 27, a(136936800) = 28, a(155195040) = 29, a(310390080) = 30, a(465585120) = 31, a(775975200) = 32, a(1163962800) = 33, a(2327925600) = 36, a(4655851200) = 37, a(13967553600) = 38, a(16295479200) = 40. - Charles R Greathouse IV, Dec 19 2016

Examples

			a(10) = 2 because 10 has 4 divisors {1,2,5,10} among which 2 divisors {1,10} are tetrahedral numbers.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k + 1) (k + 2)/6)/(1 - x^(k (k + 1) (k + 2)/6)), {k, 1, n}], {x, 0, n}], {n, 1, 120}]
  • PARI
    a(n)=sum(k=1,sqrtnint(6*n,3),n%(k*(k+1)*(k+2)/6)==0) \\ Charles R Greathouse IV, Dec 13 2016
    
  • PARI
    isA000292(n)=my(k=sqrtnint(6*n,3)); k*(k+1)*(k+2)==6*n
    a(n)=sumdiv(n,d,isA000292(d)) \\ Charles R Greathouse IV, Dec 13 2016

Formula

G.f.: Sum_{k>=1} x^(k*(k+1)*(k+2)/6)/(1 - x^(k*(k+1)*(k+2)/6)).
a(n) = Sum_{d|n} A023533(d). - Antti Karttunen, Oct 01 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/2. - Amiram Eldar, Jan 02 2024

A294875 a(n) = Product_{d|n, d = x^k, with x,k > 1} prime(A052409(d)-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 6, 2, 1, 1, 2, 1, 1, 1, 30, 1, 2, 1, 2, 1, 1, 1, 6, 2, 1, 6, 2, 1, 1, 1, 210, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 1, 30, 2, 2, 1, 2, 1, 6, 1, 6, 1, 1, 1, 2, 1, 1, 2, 2310, 1, 1, 1, 2, 1, 1, 1, 24, 1, 1, 2, 2, 1, 1, 1, 30, 30, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 210, 1, 2, 2, 8, 1, 1, 1, 6, 1, 1, 1, 24, 1, 1, 1, 30, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Comments

For all i, j:
a(i) = a(j) => A294874(i) = A294874(j) => A046951(i) = A046951(j).
a(i) = a(j) => A061704(i) = A061704(j).

Crossrefs

Cf. A046951, A061704, A091050 (some of the matched sequences).

Programs

  • PARI
    A294875(n) = { my(m=1,e); fordiv(n,d, if(d>1, e = ispower(d); if(e>1, m *= prime(e-1)))); m; };

Formula

a(n) = Product_{d|n, d>1} A008578(A052409(d)).
a(n) = A064989(A293524(n)).
Other identities. For all n >= 1:
1 + A001222(a(n)) = A091050(n).

A362852 The number of divisors of n that are both bi-unitary and exponential.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 05 2023

Keywords

Comments

First differs from A061704 at n = 128, and from A304327 and abs(A307428) at n = 64.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both a bi-unitary and an exponential divisor, the exponent of the highest power of p dividing d is a number k such that k | e but k != e/2.
The least term that is higher than 2 is a(64) = 3.
This sequence is unbounded. E.g., a(2^(2^prime(n))) = prime(n).

Examples

			a(8) = 2 since 8 has 2 divisors that are both bi-unitary and exponential: 2 and 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e] - If[OddQ[e], 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, numdiv(f[i, 2]) - !(f[i, 2] % 2));}

Formula

Multiplicative with a(p^e) = d(e) if e is odd, and d(e)-1 if e is even, where d(k) is the number of divisors of k (A000005).
a(n) = 1 if and only if n is cubefree (A004709).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (d(k)+(k mod 2)-1)/p^k) = 1.1951330849... .

A368248 The number of unitary divisors of the cubefull part of n (A360540).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Comments

First differs from A061704 and A362852 at n = 64, and from A304327 at n = 72.
Also, the number of squarefree divisors of the cubefull part of n.
Also, the number of cubes of squarefree numbers (A062838) that divide n.
The number of unitary divisors of n that are cubefull numbers (A036966). - Amiram Eldar, Jun 19 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e > 2, 2, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x < 3, 1, 2), factor(n)[, 2]));

Formula

a(n) = A034444(A360540(n)).
a(n) = abs(A307428(n)).
Multiplicative with a(p) = 1 for e <= 2, and 2 for e >= 3.
a(n) >= 1, with equality if and only if n is cubefree (A004709).
a(n) <= A034444(n), with equality if and only if n is cubefull (A036966).
Dirichlet g.f.: zeta(s)*zeta(3*s)/zeta(6*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3)/zeta(6) = 1.181564... (A157289).
In general, the asymptotic mean of the number of unitary divisors of the k-full part of n is zeta(k)/zeta(2*k).
Showing 1-10 of 25 results. Next