cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A060431 Number of cubefree numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 33, 34, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 46, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 61
Offset: 1

Views

Author

Vladeta Jovovic, Apr 06 2001

Keywords

References

  • I. M. Vinogradov, Elements of the Theory of Numbers,(in Russian), Moscow, 1981, p. 36.

Crossrefs

Programs

  • Haskell
    a060431 n = a060431_list !! (n-1)
    a060431_list = scanl1 (+) a212793_list -- Reinhard Zumkeller, May 27 2012
    
  • Magma
    [&+[MoebiusMu(d)*Floor(n div d^3):d in [1..n]]:n in [1..75]]; // Marius A. Burtea, Oct 02 2019
    
  • PARI
    a(n)=sum(k=1,n,moebius(k)*floor(n/k^3)) \\ Benoit Cloitre, Jun 13 2007
    
  • PARI
    for (n=1, 500, a=sum(k=1, n, moebius(k)*floor(n/k^3)); write("b060431.txt", n, " ", a)) \\ Harry J. Smith, Jul 05 2009
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,sqrtnint(n,3), s+=n\k[1]^3*moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import mobius, integer_nthroot
    def A060431(n): return sum(mobius(k)*(n//k**3) for k in range(1, integer_nthroot(n,3)[0]+1)) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = Sum_{d>=1} mu(d)*floor(n/d^3), mu(d) = Moebius function A008683.
a(n) is asymptotic to (1/zeta(3))*n, see A088453. - Benoit Cloitre, Jun 13 2007
a(n) = Sum_{k = 1..n} A212793(k). - Reinhard Zumkeller, May 27 2012

A013938 a(n) = Sum_{k=1..n} floor(n/k^4).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Floor[n/k^4], {k, 1, n}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 12 2019 *)
  • PARI
    a(n) = sum(k=1, n, n\k^4); \\ Michel Marcus, Feb 11 2017

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} x^(k^4)/(1 - x^(k^4)). - Ilya Gutkovskiy, Feb 11 2017
a(n) ~ zeta(4)*n = Pi^4*n/90. - Vaclav Kotesovec, Oct 12 2019

A309082 a(n) = n - floor(n/2^3) + floor(n/3^3) - floor(n/4^3) + ...

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 25, 26, 27, 28, 29, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 50, 51, 51, 52, 53, 54, 55, 56, 57, 58, 57, 58, 59, 60, 61, 62, 63, 64, 64, 65, 66, 67
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(k + 1) Floor[n/k^3], {k, 1, n}], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[1/(1 - x) Sum[(-1)^(k + 1) x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
    Table[Sum[Boole[IntegerQ[d^(1/3)] && OddQ[d]], {d, Divisors[n]}] - Sum[Boole[IntegerQ[d^(1/3)] && EvenQ[d]], {d, Divisors[n]}], {n, 1, 75}] // Accumulate

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} (-1)^(k+1) * x^(k^3)/(1 - x^(k^3)).
a(n) ~ 3*zeta(3)*n/4. - Vaclav Kotesovec, Oct 12 2019

A309126 a(n) = n + 2^3 * floor(n/2^3) + 3^3 * floor(n/3^3) + 4^3 * floor(n/4^3) + ...

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50, 78, 79, 80, 81, 82, 91, 92, 93, 94, 95, 96, 97, 98, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 125, 126, 127, 128, 156, 157, 166, 167, 168, 169, 170, 171, 172, 173, 246, 247, 248, 249, 250, 251, 252
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 13 2019

Keywords

Comments

Partial sums of A113061.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^3 Floor[n/k^3], {k, 1, n}], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[1/(1 - x) Sum[k^3 x^(k^3)/(1 - x^(k^3)), {k, 1, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, k^3*(n\k^3)); \\ Seiichi Manyama, Aug 30 2021

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} k^3 * x^(k^3)/(1 - x^(k^3)).
a(n) ~ zeta(4/3)*n^(4/3)/4 - n/2. - Vaclav Kotesovec, Aug 30 2021

A306533 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=1..n} floor(n/j^k).

Original entry on oeis.org

1, 1, 4, 1, 3, 9, 1, 2, 5, 16, 1, 2, 3, 8, 25, 1, 2, 3, 5, 10, 36, 1, 2, 3, 4, 6, 14, 49, 1, 2, 3, 4, 5, 7, 16, 64, 1, 2, 3, 4, 5, 6, 8, 20, 81, 1, 2, 3, 4, 5, 6, 7, 10, 23, 100, 1, 2, 3, 4, 5, 6, 7, 9, 12, 27, 121, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 29, 144, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 35, 169
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 22 2019

Keywords

Examples

			Square array begins:
   1,   1,  1,  1,  1,  1,  ...
   4,   3,  2,  2,  2,  2,  ...
   9,   5,  3,  3,  3,  3,  ...
  16,   8,  5,  4,  4,  4,  ...
  25,  10,  6,  5,  5,  5,  ...
  36,  14,  7,  6,  6,  6,  ...
		

Crossrefs

Columns k=0..4 give A000290, A006218, A013936, A013937, A013938.
Cf. A306534.

Programs

  • Mathematica
    Table[Function[k, Sum[Floor[n/j^k], {j, 1, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k (for k > 0): (1/(1 - x)) * Sum_{j>=1} x^(j^k)/(1 - x^(j^k)).

A069470 a(n) = Sum_{k>=1} floor(n/(k*(k+1)/2)).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 9, 10, 11, 13, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30, 32, 35, 36, 37, 40, 41, 42, 44, 46, 47, 52, 53, 54, 56, 57, 58, 62, 63, 64, 66, 68, 69, 73, 74, 75, 79, 80, 81, 84, 85, 87, 89, 90, 91, 94, 96, 98, 100, 101, 102, 107, 108, 109, 112, 113, 114, 118
Offset: 0

Views

Author

Henry Bottomley, Mar 25 2002

Keywords

Comments

The summation has floor(1/2 + sqrt(2*n)) = A002024(n) nonzero terms. - Enrique Pérez Herrero, Apr 05 2010

Examples

			a(11) = floor(11/1) + floor(11/3) + floor(11/6) + floor(11/10) + floor(11/15) + ... = 11 + 3 + 1 + 1 + 0 + ... = 16.
		

Crossrefs

Programs

  • Magma
    [(&+[Floor(n/(k*(k+1)/2)): k in [1..100]]): n in [0..30]]; // G. C. Greubel, May 23 2018
  • Mathematica
    A069470[n_]:=Sum[Floor[(2*n)/(k*(1 + k))], {k, 1, Floor[1/2 + Sqrt[2*n]]}] (* Enrique Pérez Herrero, Apr 05 2010 *)
  • PARI
    for(n=0, 30, print1(sum(k=1, 100, floor(n/(k*(k+1)/2))), ", ")) \\ G. C. Greubel, May 23 2018
    

Formula

a(n) = a(n-1) + A007862(n).
It appears that limit((sum(floor((1/2)*n/(k*(k+1))), k=1..n))/n, n=infinity) = 1/2. - Stephen Crowley, Aug 12 2009
From Enrique Pérez Herrero, Apr 05 2010: (Start)
a(n) <= floor((2*n^2)/(1 + n)) = A004275(n).
a(n) <= floor((2*n*floor((1 + 2*sqrt(2*n))/2))/(1+floor((1+2*sqrt(2*n))/2))). (End)
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k*(k+1)/2)/(1 - x^(k*(k+1)/2)). - Ilya Gutkovskiy, Jul 11 2019
Showing 1-6 of 6 results.