cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A300409 Number of centered triangular numbers dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 2, 1, 2, 2, 1, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Examples

			a(20) = 3 because 20 has 6 divisors {1, 2, 4, 5, 10, 20} among which 3 divisors {1, 4, 10} are centered triangular numbers.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N,1):
    for k from 1 do
      m:= 3*k*(k+1)/2+1;
      if m > N then break fi;
      r:= [seq(i,i=m..N,m)];
      V[r]:= map(t->t+1, V[r]);
    od:
    convert(V,list); # Robert Israel, Mar 05 2018
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(3 k (k + 1)/2 + 1)/(1 - x^(3 k (k + 1)/2 + 1)), {k, 0, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{k>=0} x^(3*k*(k+1)/2+1)/(1 - x^(3*k*(k+1)/2+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A306324 = 1.5670651... . - Amiram Eldar, Jan 02 2024

A358542 a(n) is the smallest number with exactly n divisors that are tetrahedral numbers.

Original entry on oeis.org

1, 4, 56, 20, 120, 280, 560, 840, 1680, 10920, 9240, 18480, 55440, 120120, 240240, 314160, 628320, 1441440, 2282280, 7225680, 4564560, 9129120, 13693680, 27387360, 54774720, 68468400, 77597520, 136936800, 155195040, 310390080, 465585120, 775975200, 1163962800
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2022

Keywords

Examples

			a(3) = 56 because 56 has 3 tetrahedral divisors {1, 4, 56} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    istetrah(n) = my(k=sqrtnint(6*n, 3)); k*(k+1)*(k+2)==6*n; \\ A000292
    a(n) = my(k=1); while (sumdiv(k, d, istetrah(d)) != n, k++); k; \\ Michel Marcus, Nov 21 2022

Extensions

a(20)-a(22) from Michel Marcus, Nov 21 2022
a(23)-a(30) from Jinyuan Wang, Nov 28 2022
a(31) from Martin Ehrenstein, Dec 02 2022
a(32) and a(33) from Lucas A. Brown, Dec 14 2022

A334925 G.f.: Sum_{k>=1} x^(k*(k^2 + 1)/2) / (1 - x^(k*(k^2 + 1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2020

Keywords

Comments

Number of divisors of n of the form k*(k^2 + 1)/2 (A006003).

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k (k^2 + 1)/2)/(1 - x^(k (k^2 + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * (A248177 + A001620) = 1.343731... . - Amiram Eldar, Jan 02 2024

A334926 G.f.: Sum_{k>=1} x^(k*(2*k^2 + 1)/3) / (1 - x^(k*(2*k^2 + 1)/3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2020

Keywords

Comments

Number of octahedral numbers (A005900) dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k (2 k^2 + 1)/3)/(1 - x^(k (2 k^2 + 1)/3)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A175577 = 1.278185... . - Amiram Eldar, Jan 02 2024

A334988 Sum of tetrahedral numbers dividing n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 36, 5, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 61, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 46, 1, 5, 1, 1, 1, 5, 1, 1, 1, 35, 1, 1, 1, 89, 1, 1, 1, 5, 1, 11
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[Binomial[k + 2, 3] x^Binomial[k + 2, 3]/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
  • PARI
    ist(n) = my(k=sqrtnint(6*n, 3)); k*(k+1)*(k+2)==6*n; \\ A000292
    a(n) = sumdiv(n, d, if (ist(d), d)); \\ Michel Marcus, May 19 2020

Formula

G.f.: Sum_{k>=1} binomial(k+2,3) * x^binomial(k+2,3) / (1 - x^binomial(k+2,3)).
L.g.f.: log(G(x)), where G(x) is the g.f. for A068980.
a(n) = Sum_{d|n} A023533(d) * d.

A334924 G.f.: Sum_{k>=1} x^(k^2*(k + 1)/2) / (1 - x^(k^2*(k + 1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2020

Keywords

Comments

Number of pentagonal pyramidal numbers (A002411) dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k^2 (k + 1)/2)/(1 - x^(k^2 (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/3 - 2 = A195055 - 2 = 1.289868... . - Amiram Eldar, Jan 02 2024
Showing 1-6 of 6 results.