A300409 Number of centered triangular numbers dividing n.
1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 2, 1, 2, 2, 1, 1, 1, 3
Offset: 1
Keywords
Examples
a(20) = 3 because 20 has 6 divisors {1, 2, 4, 5, 10, 20} among which 3 divisors {1, 4, 10} are centered triangular numbers.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Centered Triangular Number.
- Index entries for sequences related to centered polygonal numbers.
Programs
-
Maple
N:= 100: # for a(1)..a(N) V:= Vector(N,1): for k from 1 do m:= 3*k*(k+1)/2+1; if m > N then break fi; r:= [seq(i,i=m..N,m)]; V[r]:= map(t->t+1, V[r]); od: convert(V,list); # Robert Israel, Mar 05 2018
-
Mathematica
nmax = 100; Rest[CoefficientList[Series[Sum[x^(3 k (k + 1)/2 + 1)/(1 - x^(3 k (k + 1)/2 + 1)), {k, 0, nmax}], {x, 0, nmax}], x]]
Formula
G.f.: Sum_{k>=0} x^(3*k*(k+1)/2+1)/(1 - x^(3*k*(k+1)/2+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A306324 = 1.5670651... . - Amiram Eldar, Jan 02 2024
Comments