cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A300410 Number of centered square numbers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Examples

			a(26) = 2 because 26 has 4 divisors {1, 2, 13, 26} among which 2 divisors {1, 13} are centered square numbers.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N,1):
    for k from 1 do
      m:= 2*k*(k+1)+1;
      if m > N then break fi;
      r:= [seq(i,i=m..N,m)];
      V[r]:= map(t->t+1, V[r]);
    od:
    convert(V,list); # Robert Israel, Mar 05 2018
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(2 k (k + 1) + 1)/(1 - x^(2 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{k>=0} x^(2*k*(k+1)+1)/(1 - x^(2*k*(k+1)+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A228048 = 1.440659... . - Amiram Eldar, Jan 02 2024

A358544 a(n) is the smallest number with exactly n divisors that are centered triangular numbers.

Original entry on oeis.org

1, 4, 20, 320, 460, 5440, 14260, 12920, 168640, 103360, 594320, 3878720, 2377280, 9211960, 18423920, 36847840, 125995840, 73695680, 865924240, 976467760, 1952935520, 3463696960, 3905871040, 31246968320, 22946992360
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2022

Keywords

Comments

Any subsequent terms are > 10^10. - Lucas A. Brown, Dec 24 2022

Examples

			a(3) = 20 because 20 has 3 centered triangular divisors {1, 4, 10} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    isct(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k)); \\ A005448
    a(n) = my(k=1); while (sumdiv(k, d, isct(d)) != n, k++); k; \\ Michel Marcus, Nov 21 2022

Extensions

a(14) from Michel Marcus, Nov 21 2022
a(15)-a(25) from Jinyuan Wang, Nov 29 2022

A334925 G.f.: Sum_{k>=1} x^(k*(k^2 + 1)/2) / (1 - x^(k*(k^2 + 1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2020

Keywords

Comments

Number of divisors of n of the form k*(k^2 + 1)/2 (A006003).

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k (k^2 + 1)/2)/(1 - x^(k (k^2 + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * (A248177 + A001620) = 1.343731... . - Amiram Eldar, Jan 02 2024

A334987 Sum of centered triangular numbers dividing n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 1, 1, 20, 15, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 32, 5, 1, 1, 1, 5, 1, 20, 1, 15, 1, 1, 1, 5, 1, 47, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 20, 1, 1, 15, 1, 32, 1, 69, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 24, 1, 1, 1, 15, 1, 1, 1, 5, 86, 1, 1, 5, 1, 11
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(3 k (k - 1)/2 + 1) x^(3 k (k - 1)/2 + 1)/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
  • PARI
    isc(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k));
    a(n) = sumdiv(n, d, if (isc(d), d)); \\ Michel Marcus, May 19 2020

Formula

G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^(3*k*(k - 1)/2 + 1) / (1 - x^(3*k*(k - 1)/2 + 1)).
L.g.f.: log(G(x)), where G(x) is the g.f. for A280950.

A359231 a(n) is the smallest centered triangular number divisible by exactly n centered triangular numbers.

Original entry on oeis.org

1, 4, 64, 5860, 460, 74260, 14260, 1221760, 5567104, 103360, 20120860, 169096960, 1211757760, 31286787760, 31498960, 114183284260, 1553569960, 33186496960, 446613160960, 43581101074960, 274644405760, 64262632960, 121634429663260, 5786547945760
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 22 2022

Keywords

Comments

a(25) > 10^15. a(30) = 281149511296960. - Jon E. Schoenfield, Dec 25 2022

Examples

			a(5) = 460, because 460 is a centered triangular number that has 5 centered triangular divisors {1, 4, 10, 46, 460} and this is the smallest such number.
		

Crossrefs

Programs

  • Magma
    // Note: the program below finds all terms through a(22) except for
    //  a(20) = 43581101074960, which would be reached at k = 5390183.
    a := [ 0 : n in [ 1 .. 22 ] ];
    for k in [ 0 .. 550000 ] do
       c := 3*((k*(k - 1)) div 2) + 1;
       D := Divisors(c);
       n := 0;
       for d in D do
          if d mod 3 eq 1 then
             if IsSquare(((d - 1) div 3)*8 + 1) then
                n +:= 1;
             end if;
          end if;
       end for;
       if a[n] eq 0 then
          a[n] := c;
       end if;
    end for;
    a; // Jon E. Schoenfield, Dec 25 2022

Extensions

a(8)-a(24) from Jon E. Schoenfield, Dec 25 2022
Showing 1-5 of 5 results.