cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A300409 Number of centered triangular numbers dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 2, 1, 2, 2, 1, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Examples

			a(20) = 3 because 20 has 6 divisors {1, 2, 4, 5, 10, 20} among which 3 divisors {1, 4, 10} are centered triangular numbers.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N,1):
    for k from 1 do
      m:= 3*k*(k+1)/2+1;
      if m > N then break fi;
      r:= [seq(i,i=m..N,m)];
      V[r]:= map(t->t+1, V[r]);
    od:
    convert(V,list); # Robert Israel, Mar 05 2018
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(3 k (k + 1)/2 + 1)/(1 - x^(3 k (k + 1)/2 + 1)), {k, 0, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{k>=0} x^(3*k*(k+1)/2+1)/(1 - x^(3*k*(k+1)/2+1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A306324 = 1.5670651... . - Amiram Eldar, Jan 02 2024

A358545 a(n) is the smallest number with exactly n divisors that are centered square numbers.

Original entry on oeis.org

1, 5, 25, 325, 1625, 1105, 5525, 27625, 160225, 1022125, 801125, 5928325, 8491925, 29641625, 42459625, 444215525, 314201225, 2003613625, 1571006125, 14826740825, 12882250225, 127081657625, 64411251125, 88717383625
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2022

Keywords

Comments

Any subsequent terms are > 10^10. - Lucas A. Brown, Dec 24 2022

Examples

			a(3) = 25 because 25 has 3 centered square divisors {1, 5, 25} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    iscsq(n) = issquare(2*n-1); \\ A001844
    a(n) = my(k=1); while (sumdiv(k, d, iscsq(d)) != n, k++); k; \\ Michel Marcus, Nov 21 2022

Extensions

a(12)-a(15) from Michel Marcus, Nov 21 2022
a(16) from Martin Ehrenstein, Dec 02 2022
a(17)-a(24) from Jinyuan Wang, Dec 02 2022

A334926 G.f.: Sum_{k>=1} x^(k*(2*k^2 + 1)/3) / (1 - x^(k*(2*k^2 + 1)/3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2020

Keywords

Comments

Number of octahedral numbers (A005900) dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k (2 k^2 + 1)/3)/(1 - x^(k (2 k^2 + 1)/3)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A175577 = 1.278185... . - Amiram Eldar, Jan 02 2024

A359232 a(n) is the smallest centered square number divisible by exactly n centered square numbers.

Original entry on oeis.org

1, 5, 25, 925, 1625, 1105, 47125, 350285, 493025, 3572465, 47074105, 13818025, 4109345825, 171921425, 294346585, 130334225125, 190608050165, 2687125303525, 2406144489125, 5821530534625, 49723952067725, 1500939251825, 665571884367325, 8362509238504525, 1344402738869125
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 22 2022

Keywords

Comments

From Jon E. Schoenfield, Dec 24 2022: (Start)
For all n > 22, a(n) > 5*10^14.
For all n in 10..22, the prime factors of a(n) include 5, 13, and 17. Every index k such that 5*13*17=1105 divides the k-th centered square number satisfies k == { 23, 231, 418, 431, 673, 686, 873, 1081 } (mod 1105), so a search for upper bounds for larger terms can be facilitated by testing only such indices k.
Some known upper bounds: a(23) <= 665571884367325, a(24) <= 8362509238504525, a(25) <= 1344402738869125, a(26) <= 49165090920807485, a(27) <= 4384711086003625, a(30) <= 13148945184367525, a(33) <= 179899779754020625. (End)

Examples

			a(5) = 1625, because 1625 is a centered square number that has 5 centered square divisors {1, 5, 13, 25, 1625} and this is the smallest such number.
		

Crossrefs

Programs

  • Magma
    a := [ 0 : n in [ 1 .. 17 ] ];
    for k in [ 0 .. 310000 ] do
       c := 2*k*(k+1)+1;
       D := Divisors(c);
       n := 0;
       for d in D do
          if IsSquare(2*d - 1) then
             n +:= 1;
          end if;
       end for;
       if a[n] eq 0 then
          a[n] := c;
       end if;
    end for;
    a; // Jon E. Schoenfield, Dec 24 2022
    
  • PARI
    a(n) = for(k=0, oo, my(t=2*k*(k+1)+1); if(sumdiv(t, d, issquare(2*d-1)) == n, return(t))); \\ Daniel Suteu, Dec 31 2022

Extensions

a(10)-a(22) from Jon E. Schoenfield, Dec 24 2022
a(23)-a(25) confirmed by Daniel Suteu, Dec 31 2022
Showing 1-4 of 4 results.