A334988 Sum of tetrahedral numbers dividing n.
1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 36, 5, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 61, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 46, 1, 5, 1, 1, 1, 5, 1, 1, 1, 35, 1, 1, 1, 89, 1, 1, 1, 5, 1, 11
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Tetrahedral Number
Programs
-
Mathematica
nmax = 90; CoefficientList[Series[Sum[Binomial[k + 2, 3] x^Binomial[k + 2, 3]/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
-
PARI
ist(n) = my(k=sqrtnint(6*n, 3)); k*(k+1)*(k+2)==6*n; \\ A000292 a(n) = sumdiv(n, d, if (ist(d), d)); \\ Michel Marcus, May 19 2020