cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 153 results. Next

A056191 Characteristic cube divisor of n: cube of g = gcd(K,F), where K is the largest square root divisor of n (A000188) and F = n/(K*K) = A007913(n) is its squarefree part; g^2 divides K^2 = A008833(n) = g^2*L^2 and g divides F = gf.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Comments

This is not the largest cube which divides n. It is canonical, since the decomposition n = KKgggf is unique (factors are defined above and dependent on n).

Examples

			If n=24, largest square divisor is 4, squarefree part is 6, g=2, a(24)=8; n=81, largest square divisor is 81, both F and g is 1, a(81)=1.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=With[{sf=Times@@Power@@@({#[[1]], Mod[#[[2]], 2]}&/@FactorInteger[n])}, GCD[sf, n/sf]]; Table[a[n]^3, {n, 1, 100}] (* Vincenzo Librandi, Oct 08 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1 || !(f[i,2]%2), 1,  f[i,1]^3));} \\ Amiram Eldar, Sep 05 2023

Formula

a(n) = A055229(n)^3 = g^3 = ggg; n = (KK)*(ggg)*f = K^2*g^3*f = KK*a(n)^3*f.
Multiplicative with a(p^e)=1 for even e, a(p)=1, a(p^e)=p^3 for odd e > 1. - Vladeta Jovovic, May 01 2002

A056622 a(n) = A000188(n)/A055229(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 7, 3, 10, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name: "Square root of largest unitary square divisor of n." The previous name was incorrect for numbers that have an odd exponent in their prime factorization that is larger than 3. For the correct square root of largest unitary square divisor of n see A071974. - Amiram Eldar, Jul 26 2024
Multiplicative because quotient of two multiplicative sequences. - Christian G. Bower, May 16 2005

Examples

			For n = 125: A000188(125) = 5, A055229(125) = 5, so a(125) = 1.
For n = 360: A000188(360) = 6, A055229(360) = 2, so a(360) = 3.
		

Crossrefs

Programs

Formula

Multiplicative with a(p^e) = p^(e/2) if e even, a(p) = 1, and a(p^e) = p^((e-3)/2) for odd e > 1. - Amiram Eldar, Sep 14 2020
Dirichlet g.f.: zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s-1) + 1/p^(3*s)). - Amiram Eldar, Dec 18 2023
a(n) = sqrt(A056623(n)). - Amiram Eldar, Jul 26 2024
From Vaclav Kotesovec, Jan 27 2025: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 1/p^(3*s-1) - 1/p^(4*s) + 1/p^(4*s-1)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 1/p^(3*s-1) - 1/p^(4*s) + 1/p^(4*s-1)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4) = 0.490798286634728225909154323920711804307234495196201399106047774...,
f'(1) = f(1) * Sum_{p prime} (5*p^2 - 7*p + 4) * log(p) / (p^4 - 2*p^2 + 2*p - 1) = f(1) * 1.94788222046256567576552118452630646598176999674201755783...
and gamma is the Euler-Mascheroni constant A001620. (End)

Extensions

Name replaced with a formula by Amiram Eldar, Jul 26 2024

A120486 Partial sums of A000188.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 13, 14, 15, 17, 18, 19, 20, 24, 25, 28, 29, 31, 32, 33, 34, 36, 41, 42, 45, 47, 48, 49, 50, 54, 55, 56, 57, 63, 64, 65, 66, 68, 69, 70, 71, 73, 76, 77, 78, 82, 89, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 109, 110, 111, 114, 122, 123, 124, 125, 127, 128
Offset: 1

Views

Author

Gerry Myerson, Nov 21 2007

Keywords

Comments

This sequence can also be described as the number of 3-term nondecreasing geometric progressions with no term exceeding n.
a(n) = A132188(n) - A132345(n). - Reinhard Zumkeller, Apr 21 2012

Crossrefs

Programs

  • Haskell
    a120486 n = a120486_list !! (n - 1)
    a120486_list = scanl1 (+) a000188_list
    -- Reinhard Zumkeller, Apr 22 2012
  • Maple
    with(numtheory): seq(add(phi(k)*floor(n/k^2), k=1..floor(sqrt(n))), n=1..100); # Ridouane Oudra, Aug 18 2019

Formula

a(n) = 3n log(n) / Pi^2 + O(n). - Griffin N. Macris, Jan 28 2017
a(n) ~ 3*n*((log(n) + (3*gamma - 1))/ Pi^2 - 12*(Zeta'(2)/Pi^4)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..floor(sqrt(n))} phi(k)*floor(n/k^2), where phi is the Euler totient function A000010. - Ridouane Oudra, Aug 18 2019
G.f.: (1/(1 - x)) * Sum_{k>=1} phi(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 26 2021
From Ridouane Oudra, Oct 05 2024: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..i} A010052(i*j).
a(n) = A132345(n) + n.
a(n) = (1/2)*A132189(n) + n.
a(n) = (1/2)*(A132188(n) + n). (End)

A283983 Square root of the largest square dividing prime factorization representation of the n-th Stern polynomial: a(n) = A000188(A260443(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 5, 3, 1, 15, 1, 1, 1, 3, 5, 15, 7, 45, 5, 15, 1, 15, 35, 15, 1, 105, 1, 1, 1, 3, 5, 105, 7, 225, 35, 525, 11, 1575, 175, 1125, 7, 1575, 35, 105, 1, 105, 35, 525, 77, 1575, 35, 525, 1, 105, 385, 105, 1, 1155, 1, 1, 1, 3, 5, 1155, 7, 1575, 385, 3675, 11, 7875, 1225, 275625, 77, 55125, 2695, 5775, 13, 17325, 13475, 275625, 539
Offset: 0

Views

Author

Antti Karttunen, Mar 25 2017

Keywords

Crossrefs

Cf. A023758 (positions of ones).

Programs

Formula

a(n) = A000188(A260443(n)).
a(n) = A000196(A283989(n)).
Other identities. For all n >= 0:
a(2n) = A003961(a(n)).
A001222(a(n)) = A284264(n).

A293219 a(n) = A000188(A292270(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 6, 1, 1, 9, 2, 1, 2, 11, 14, 1, 1, 1, 18, 1, 4, 5, 1, 7, 2, 1, 26, 1, 1, 29, 30, 1, 2, 33, 1, 2, 1, 1, 3, 1, 1, 41, 2, 1, 2, 1, 1, 22, 1, 1, 50, 1, 2, 53, 2, 2, 2, 7, 1, 3, 5, 4, 2, 1, 1, 65, 1, 1, 2, 69, 1, 17, 2, 1, 74, 1, 1, 7, 2, 1, 1, 81, 1, 1, 6, 7, 86, 1, 1, 89, 90, 26, 2, 1, 1, 1, 1, 1, 98, 3, 3, 6, 2, 1, 1, 105
Offset: 0

Views

Author

Antti Karttunen, Oct 07 2017

Keywords

Crossrefs

Cf. A163782 (after a(1) = 1 gives the other positions where a(n) = n).

Programs

Formula

a(n) = A000188(A292270(n)).

A335425 Lexicographically earliest infinite sequence such that a(i) = a(j) => A000188(i) = A000188(j) and A335424(i) = A335424(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 5, 2, 7, 4, 8, 2, 9, 2, 5, 7, 7, 2, 10, 11, 7, 9, 5, 2, 12, 2, 13, 7, 7, 4, 14, 2, 7, 7, 15, 2, 16, 2, 5, 9, 7, 2, 13, 17, 18, 7, 5, 2, 19, 7, 15, 7, 7, 2, 10, 2, 7, 9, 20, 7, 16, 2, 5, 7, 16, 2, 21, 2, 7, 18, 5, 4, 16, 2, 13, 22, 7, 2, 15, 7, 7, 7, 15, 2, 23, 7, 5, 7, 7, 7, 24, 2, 25, 9, 26, 2, 16, 2, 15, 12
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A000188(n), A046523(A335423(n))].
For all i, j: A305800(i) = A305800(j) => a(i) = a(j) => A001222(i) = A001222(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000188(n) = core(n, 1)[2]; \\ From A000188
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A248663(n) = A048675(core(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A335423(n) = A005940(1+A248663(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux335425(n) = [A000188(n),A046523(A335423(n))];
    v335425 = rgs_transform(vector(up_to,n,Aux335425(n)));
    A335425(n) = v335425[n];

A347120 Square root of the largest square dividing A005940(1+(3*A156552(n))): a(n) = A000188(A332449(n)).

Original entry on oeis.org

1, 2, 3, 1, 5, 4, 7, 1, 1, 6, 11, 1, 13, 10, 9, 3, 17, 2, 19, 5, 15, 14, 23, 1, 1, 22, 1, 7, 29, 8, 31, 3, 21, 26, 25, 1, 37, 34, 33, 5, 41, 12, 43, 11, 1, 38, 47, 3, 1, 2, 39, 13, 53, 2, 35, 7, 51, 46, 59, 1, 61, 58, 7, 9, 55, 20, 67, 17, 57, 18, 71, 1, 73, 62, 3, 19, 49, 28, 79, 15, 5, 74, 83, 11, 65, 82, 69, 11, 89
Offset: 1

Views

Author

Antti Karttunen, Aug 22 2021

Keywords

Crossrefs

Programs

  • PARI
    A000188(n) = core(n, 1)[2]; \\ This function from A000188
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A332449(n) = A005940(1+(3*A156552(n)));
    A347120(n) = A000188(A332449(n));

Formula

a(n) = A000188(A332449(n)).
a(n) = A000196(A332449(n)/A347119(n)).
a(p) = p for all primes p.

A326038 Square root of the largest square dividing the sum of divisors of n: a(n) = A000188(sigma(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 4, 6, 2, 2, 1, 1, 2, 2, 1, 6, 4, 3, 4, 3, 4, 1, 1, 2, 2, 3, 1, 4, 2, 2, 1, 6, 4, 2, 1, 1, 6, 7, 3, 2, 6, 2, 4, 3, 2, 2, 1, 4, 2, 1, 2, 12, 2, 3, 4, 12, 6, 1, 1, 1, 2, 2, 4, 2, 4, 1, 11, 3, 2, 4, 6, 2, 2, 6, 3, 3, 4, 2, 8, 12, 2, 6, 7, 3, 2, 1, 1, 6, 2, 1, 8
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000188(A000203(n)) = A000196(A326039(n)).

A355261 a(n) = largest-nth-power(n, 2) * radical(n) = A000188(n) * A007947(n), where largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 8, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 8, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 24, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 16, 65, 66, 67, 68
Offset: 1

Views

Author

Peter Luschny, Jul 12 2022

Keywords

Crossrefs

Programs

  • Maple
    with(NumberTheory): seq(LargestNthPower(n, 2)*Radical(n), n = 1..68);
  • Mathematica
    Array[Apply[Times, #[[All, 1]]]*Apply[Times, #1^Floor[#2/2] & @@ Transpose@ #] &@ FactorInteger[#] &, 68] (* Michael De Vlieger, Jul 12 2022 *)
  • Python
    from math import prod
    from sympy import factorint
    def A355261(n): return prod(p**((e>>1)+1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 13 2022

Formula

Multiplicative with a(p^e) = p^(1+floor(e/2)). - Amiram Eldar, Jul 13 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/2) * Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.447583182004... . - Amiram Eldar, Nov 13 2022

A253196 Irregular array read by rows. T(n,k) is the number of divisors d of n such that k^2 is the greatest square that divides d, n>=1, 1<=k<=A000188(n).

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 0, 1, 4, 2, 4, 2, 2, 4, 4, 2, 2, 0, 1, 2, 4, 0, 2, 2, 4, 2, 4, 4, 2, 4, 4, 2, 0, 0, 0, 1, 4, 2, 0, 2, 4, 2, 2, 8, 2, 2, 2, 0, 2, 4, 4, 4, 4, 2, 2, 0, 0, 1, 2, 4, 4, 4, 4, 2, 8, 2, 4, 2, 4, 0, 2, 4, 2, 4, 4, 0, 2, 2, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 2, 4, 4, 2, 2, 4, 0, 4, 4, 4, 4, 4, 4, 2, 8, 4
Offset: 1

Views

Author

Geoffrey Critzer, Mar 24 2015

Keywords

Comments

Row sums are A000005.
Column 1 is A034444.

Examples

			1
2
2
2,1
2
4
2
2,2
2,0,1
4
2
4,2
2
4
4
2,2,0,1
2
4,0,2
For n=18, The divisors are: 1,2,3,6,9,18.  T(18,1)=4 because 1 is the largest square that divides 1,2,3,6.  T(18,3) = 2 because 9 is the largest square that divides 9,18.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:= n-> (p-> seq(coeff(p, x, j), j=1..degree(p)))(add(
        x^mul(i[1]^iquo(i[2], 2), i=ifactors(d)[2]), d=divisors(n))):
    seq(T(n), n=1..70);  # Alois P. Heinz, Mar 25 2015
  • Mathematica
    nn = 60;g[list_] := list /. {j___, 0 ...} -> {j}; f[list_, i_] := list[[i]];Map[g, Transpose[Table[a = Table[If[n == k^2, 1, 0], {n, 1, nn}]; b = Table[2^PrimeNu[n], {n, 1, nn}];Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}], {k,1, nn}]]] // Grid

Formula

Dirichlet g.f. for column k: 1/k^(2*s) * zeta(s)^2/zeta(2*s).
Showing 1-10 of 153 results. Next