cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A337050 Numbers without an exponent 2 in their prime factorization.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2020

Keywords

Comments

Numbers k such that the powerful part (A057521) of k is a cubefull number (A036966).
Numbers k such that A003557(k) = k/A007947(k) is a powerful number (A001694).
The asymptotic density of this sequence is Product_{primes p} (1 - 1/p^2 + 1/p^3) = 0.748535... (A330596).
A304364 is apparently a subsequence.
These numbers were named semi-2-free integers by Suryanarayana (1971). - Amiram Eldar, Dec 29 2020

Examples

			6 = 2^1 * 3^1 is a term since none of the exponents in its prime factorization is equal to 2.
9 = 3^2 is not a term since it has an exponent 2 in its prime factorization.
		

Crossrefs

Complement of A038109.
A005117, A036537, A036966, A048109, A175496, A268335 and A336590 are subsequences.
Numbers without an exponent k in their prime factorization: A001694 (k=1), this sequence (k=2), A386799 (k=3), A386803 (k=4), A386807 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 2: this sequence (m=0), A386796 (m=1), A386797 (m=2), A386798 (m=3).

Programs

  • Maple
    q:= n-> andmap(i-> i[2]<>2, ifactors(n)[2]):
    select(q, [$1..100])[];  # Alois P. Heinz, Aug 12 2020
  • Mathematica
    Select[Range[100], !MemberQ[FactorInteger[#][[;;, 2]], 2] &]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 2, return(0))); 1; } \\ Amiram Eldar, Oct 21 2023

Formula

Sum_{n>=1} 1/a(n)^s = zeta(s) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)), for s > 1. - Amiram Eldar, Oct 21 2023

A352475 Numbers m such that gcd(d(m),6) = 1.

Original entry on oeis.org

1, 16, 64, 81, 625, 729, 1024, 1296, 2401, 4096, 5184, 10000, 11664, 14641, 15625, 28561, 38416, 40000, 46656, 50625, 59049, 65536, 82944, 83521, 117649, 130321, 153664, 194481, 234256, 250000, 262144, 279841, 331776, 455625, 456976, 531441, 640000, 707281, 746496
Offset: 1

Views

Author

Michael De Vlieger, Mar 26 2022

Keywords

Comments

All terms are square since numbers coprime to 6 are odd.
The square roots of terms are in A001694.
Intersection of A000290 and A336590, i.e., numbers whose prime factorization has only exponents that are congruent to {0, 4} mod 6 (A047233). - Amiram Eldar, Mar 31 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[864]^2, GCD[DivisorSigma[0, #], 6] == 1 &] (* or, more efficiently, *)
    With[{nn = 864}, Select[Union[Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}]]^2, Mod[DivisorSigma[0, #], 3] > 0 &]]
  • PARI
    isok(m) = gcd(numdiv(m), 6) == 1; \\ Michel Marcus, Mar 29 2022
    
  • PARI
    m = 100000; seq = direuler(p=2, m, (1 - X^8)/(1 - X^4)/(1 - X^6)); for(n=1, m, if(seq[n] != 0, print1(n, ", "))) \\ Vaclav Kotesovec, May 19 2022

Formula

a(n) = A350014(n)^2.
Sum_{n>=1} 1/a(n) = Pi^2/9 (A100044). - Amiram Eldar, Mar 31 2022
The number of terms <= x is (zeta(3/2)/zeta(2))*x^(1/4) + (zeta(2/3)/zeta(4/3))*x^(1/6) + O(x^(1/8 + eps)), for all eps > 0 (Hilberdink, 2022). - Amiram Eldar, May 18 2022

A354178 Numbers whose number of divisors is coprime to 30.

Original entry on oeis.org

1, 64, 729, 1024, 4096, 15625, 46656, 59049, 65536, 117649, 262144, 531441, 746496, 1000000, 1771561, 2985984, 3779136, 4194304, 4826809, 7529536, 9765625, 11390625, 16000000, 24137569, 34012224, 43046721, 47045881, 47775744, 60466176, 64000000, 85766121, 113379904
Offset: 1

Views

Author

Amiram Eldar, May 18 2022

Keywords

Comments

Numbers k such that gcd(d(k), 30) = 1, where d(k) is the number of divisors of k (A000005).
All the terms are squares since their number of divisors is odd.

Examples

			64 is a term since A000005(64) = 7 and gcd(7, 30) = 1.
		

Crossrefs

Subsequence of other sequences of numbers k such that gcd(d(k), m) = 1: A000290 (m=2), A336590 (m=3), A352475 (m=6).

Programs

  • Mathematica
    Select[Range[10^4]^2, CoprimeQ[DivisorSigma[0, #], 30] &]
  • PARI
    isok(k) = gcd(numdiv(k), 30) == 1;
    for(k=1, 10650, if(isok(k^2), print1(k^2,", ")))

Formula

a(n) = A354179(n)^2.
The number of terms <= x is (zeta(5)*zeta(5/3))/(zeta(4)*zeta(10/3))*x^(1/6) + (zeta(3)*zeta(3/5))/(zeta(2)*zeta(12/5))*x^(1/10) + O(x^(1/20 + eps)) for all eps > 0 (Hilberdink, 2022).
Sum_{n>=1} 1/a(n) = Product_{p prime} (p^2 + p^8 + p^12 + p^14 + p^18 + p^20 + p^24 + p^30)/(p^30 - 1) = 1.0183538548...

A358001 Numbers whose number of divisors is coprime to 210.

Original entry on oeis.org

1, 1024, 4096, 59049, 65536, 262144, 531441, 4194304, 9765625, 43046721, 60466176, 241864704, 244140625, 268435456, 282475249, 387420489, 544195584, 1073741824, 2176782336, 3869835264, 10000000000, 13841287201, 15479341056, 25937424601, 31381059609, 34828517376
Offset: 1

Views

Author

Michael De Vlieger, Dec 03 2022

Keywords

Comments

210 is the product of the smallest 4 primes.
Numbers k such that gcd(d(k), 210) = 1, where d(k) is the number of divisors of k (A000005).
The square roots of terms are in A001694.

Crossrefs

Subsequence of other sequences of numbers k such that gcd(d(k), m) = 1: A000290 (m=2), A336590 (m=3), A352475 (m=6), A354178 (m=30).

Programs

  • Mathematica
    With[{nn = 200000}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], CoprimeQ[DivisorSigma[0, #^2], 210] &]^2]

Formula

a(n) = A358250(n)^2.
Sum_{n>=1} 1/a(n) = Product_{p prime} (Sum_{k=2..210, gcd(k-1,210)=1} p^k)/(p^210-1) = 1.001258995976... . - Amiram Eldar, Dec 06 2022
Showing 1-4 of 4 results.