A354178 Numbers whose number of divisors is coprime to 30.
1, 64, 729, 1024, 4096, 15625, 46656, 59049, 65536, 117649, 262144, 531441, 746496, 1000000, 1771561, 2985984, 3779136, 4194304, 4826809, 7529536, 9765625, 11390625, 16000000, 24137569, 34012224, 43046721, 47045881, 47775744, 60466176, 64000000, 85766121, 113379904
Offset: 1
Keywords
Examples
64 is a term since A000005(64) = 7 and gcd(7, 30) = 1.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1709 terms from Amiram Eldar)
- Titus Hilberdink, How often is d(n) a power of a given integer?, Journal of Number Theory, Vol. 236 (2022), pp. 261-279.
- Index entries for sequences computed from exponents in factorization of n.
Crossrefs
Programs
-
Mathematica
Select[Range[10^4]^2, CoprimeQ[DivisorSigma[0, #], 30] &]
-
PARI
isok(k) = gcd(numdiv(k), 30) == 1; for(k=1, 10650, if(isok(k^2), print1(k^2,", ")))
Formula
a(n) = A354179(n)^2.
The number of terms <= x is (zeta(5)*zeta(5/3))/(zeta(4)*zeta(10/3))*x^(1/6) + (zeta(3)*zeta(3/5))/(zeta(2)*zeta(12/5))*x^(1/10) + O(x^(1/20 + eps)) for all eps > 0 (Hilberdink, 2022).
Sum_{n>=1} 1/a(n) = Product_{p prime} (p^2 + p^8 + p^12 + p^14 + p^18 + p^20 + p^24 + p^30)/(p^30 - 1) = 1.0183538548...
Comments