cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008856 Numbers n such that n^3 and n have same last 2 digits.

Original entry on oeis.org

0, 1, 24, 25, 49, 51, 75, 76, 99, 100, 101, 124, 125, 149, 151, 175, 176, 199, 200, 201, 224, 225, 249, 251, 275, 276, 299, 300, 301, 324, 325, 349, 351, 375, 376, 399, 400, 401, 424, 425, 449, 451, 475, 476, 499, 500, 501, 524, 525, 549, 551, 575, 576, 599
Offset: 1

Views

Author

Keywords

Comments

The first two terms are included by assuming a leading zero digit. - Harvey P. Dale, Sep 07 2013
n such that n == 0, 1, or 24 (mod 25) and n == 0, 1 or 3 (mod 4). - Robert Israel, Nov 30 2015

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 459.

Crossrefs

Programs

  • GAP
    a:=[0,1,24,25,49,51,75,76,99,100];; for n in [10..60] do a[n]:= a[n-1]+a[n-9]-a[n-10]; od; a; # G. C. Greubel, Sep 13 2019
  • Magma
    [n: n in [0..600] | (n^3 - n) mod 100 eq 0]; // Vincenzo Librandi, Dec 01 2015
    
  • Maple
    for n to 1000 do if n^3 - n mod 100 = 0 then print(n); fi; od;
  • Mathematica
    Join[{0,1},Select[Range[10,600],Take[IntegerDigits[#],-2] == Take[ IntegerDigits[ #^3],-2]&]] (* Harvey P. Dale, Sep 07 2013 *)
    LinearRecurrence[{1,0,0,0,0,0,0,0,1,-1}, {0,1,24,25,49,51,75,76,99,100}, 60] (* G. C. Greubel, Nov 30 2015, modified Sep 13 2019 *)
  • PARI
    concat(0, Vec(x^2*(1+23*x+x^2+24*x^3+2*x^4+24*x^5+x^6+23*x^7 +x^8)/((1-x)^2*(1+x+x^2)*(1+x^3+x^6)) + O(x^60))) \\ Colin Barker, Nov 30 2015
    
  • Sage
    def A008856_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1+23*x+x^2+24*x^3+2*x^4+24*x^5+x^6+23*x^7+x^8)/((1-x)*(1-x^9))).list()
    A008856_list(60) # G. C. Greubel, Sep 13 2019
    

Formula

a(9n)=100*n, a(9n+1)=100*n+1, a(9n+2)=100*n+24, a(9n+3)=100*n+25, a(9n+4)=100*n+49, a(9n+5)=100*n+51, a(9n+6)=100*n+75, a(9n+7)=100*n+76, a(9n+8)=100*n+99. - Franklin T. Adams-Watters, Mar 13 2006
From Colin Barker, Nov 30 2015: (Start)
a(n) = a(n-1)+a(n-9)-a(n-10) for n>10.
G.f.: x^2*(1+23*x+x^2+24*x^3+2*x^4+24*x^5+x^6+23*x^7+x^8) / ((1-x)^2 * (1+x+x^2)*(1+x^3+x^6)). (End)