cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008930 Number of compositions (p_1, p_2, p_3, ...) of n with 1 <= p_i <= i for all i.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 21, 41, 80, 157, 310, 614, 1218, 2421, 4819, 9602, 19147, 38204, 76266, 152307, 304256, 607941, 1214970, 2428482, 4854630, 9705518, 19405030, 38800412, 77585314, 155145677, 310251190, 620437691, 1240771141, 2481374234
Offset: 0

Views

Author

Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it)

Keywords

Comments

a(n) is the number of compositions (p_1,p_2,...) of n with 1<=p_i<=i for all i. a(n) is the number of Dyck n-paths with strictly increasing peaks. To get the correspondence, given such a Dyck path, split the path after the first up step reaching height i, i=1,2,...,h where h is the path's maximum height and count up steps in each block. Example: U-U-DUU-U-DDDD has been split as specified, yielding the composition (1,1,2,1). - David Callan, Feb 18 2004
Row sums of triangle A177517.

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + 21*x^7 + ...
The g.f. equals the following series involving q-factorials:
A(x) = 1 + x + x^2*(1+x) + x^3*(1+x)*(1+x+x^2) + x^4*(1+x)*(1+x+x^2)*(1+x+x^2+x^3) + x^5*(1+x)*(1+x+x^2)*(1+x+x^2+x^3)*(1+x+x^2+x^3+x^4) + ...
From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(7)=21 compositions p(1)+p(2)+...+p(m) = 7 such that p(k) <= k:
  [ 1]  [ 1 1 1 1 1 1 1 ]
  [ 2]  [ 1 1 1 1 1 2 ]
  [ 3]  [ 1 1 1 1 2 1 ]
  [ 4]  [ 1 1 1 1 3 ]
  [ 5]  [ 1 1 1 2 1 1 ]
  [ 6]  [ 1 1 1 2 2 ]
  [ 7]  [ 1 1 1 3 1 ]
  [ 8]  [ 1 1 1 4 ]
  [ 9]  [ 1 1 2 1 1 1 ]
  [10]  [ 1 1 2 1 2 ]
  [11]  [ 1 1 2 2 1 ]
  [12]  [ 1 1 2 3 ]
  [13]  [ 1 1 3 1 1 ]
  [14]  [ 1 1 3 2 ]
  [15]  [ 1 2 1 1 1 1 ]
  [16]  [ 1 2 1 1 2 ]
  [17]  [ 1 2 1 2 1 ]
  [18]  [ 1 2 1 3 ]
  [19]  [ 1 2 2 1 1 ]
  [20]  [ 1 2 2 2 ]
  [21]  [ 1 2 3 1 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i>=n,
          ceil(2^(n-1)), add(b(n-j, i+1), j=1..min(i, n)))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 25 2014, revised Jun 26 2023
  • Mathematica
    Sum[x^n*Product[(1-x^k)/(1-x), {k, 1, n}], {n, 0, 40}]+O[x]^41
    Table[SeriesCoefficient[1+Sum[x^j*Product[(1-x^k)/(1-x),{k,1,j}],{j,1,n}],{x,0,n}],{n,0,40}] (* Vaclav Kotesovec, Mar 17 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, i+1], {j, 1, Min[i, n]}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
  • PARI
    { n=8; v=vector(n); for (i=1,n,v[i]=vector(i!)); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, for (a=0,i-1, v[i][j+a*k]=v[i-1][j]+a+1))); c=vector(n); for (i=1,n, for (j=1,i!, if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
    
  • PARI
    N=66; q='q+O('q^N); Vec( sum(n=0,N, q^n * prod(k=1,n, (1-q^k)/(1-q) ) ) ) \\ Joerg Arndt, Mar 24 2014

Formula

G.f.: A(x) = Sum_{n>=0} x^n * Product_{k=1..n} (1-x^k)/(1-x). - Paul D. Hanna, Mar 20 2003
G.f.: A(x) = 1/(1 - x/(1+x) /(1 - x/(1+x+x^2) /(1 - x/(1+x+x^2+x^3) /(1 - x/(1+x+x^2+x^3+x^4) /(1 - x/(1+x+x^2+x^3+x^4+x^5) /(1 -...)))))), a continued fraction. - Paul D. Hanna, May 15 2012
Limit_{n->oo} a(n+1)/a(n) = 2. - Mats Granvik, Feb 22 2011
a(n) ~ c * 2^(n-1), where c = 0.288788095086602421... (see constant A048651). - Vaclav Kotesovec, Mar 17 2014

Extensions

More terms from Paul D. Hanna, Mar 20 2003
Offset corrected to 0 by Joerg Arndt, Mar 24 2014
New name (using comment by David Callan) from Joerg Arndt, Mar 25 2014