cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008958 Triangle of central factorial numbers 4^k T(2n+1, 2n+1-2k).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 35, 91, 1, 1, 84, 966, 820, 1, 1, 165, 5082, 24970, 7381, 1, 1, 286, 18447, 273988, 631631, 66430, 1, 1, 455, 53053, 1768195, 14057043, 15857205, 597871, 1, 1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1
Offset: 0

Views

Author

Keywords

Examples

			From _Wesley Transue_, Jan 21 2012: (Start)
Triangle begins:
  1;
  1,   1;
  1,  10,      1;
  1,  35,     91,       1;
  1,  84,    966,     820,         1;
  1, 165,   5082,   24970,      7381,         1;
  1, 286,  18447,  273988,    631631,     66430,         1;
  1, 455,  53053, 1768195,  14057043,  15857205,    597871,       1;
  1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1;
(End)
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Columns include A000447. Right-hand columns include A002452, A002453.

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^(q+1) 4^(p-n) (2p+2q-2n-1)^(2n+1)/((2n+1-2p-q)! q!), {q, 0, n-p}], {n, 0, 8}, {p, 0, n}]] (* Wesley Transue, Jan 21 2012 *)

Formula

G.f. of i-th right-hand column is x/Product_{j=1..i+1} (1 - (2j-1)^2*x).

Extensions

More terms from Vladeta Jovovic, Apr 16 2000