A009087 Numbers whose number of divisors is prime (i.e., numbers of the form p^(q-1) for primes p,q).
2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1
Examples
tau(16)=5 and 5 is prime.
References
- S. Colton, Automated Theory Formation in Pure Mathematics. New York: Springer (2002)
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..12546 (terms 1..1000 from T. D. Noe)
- S. Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2, 1999, #2.
Programs
-
Haskell
a009087 n = a009087_list !! (n-1) a009087_list = filter ((== 1) . a010051 . (+ 1) . a100995) a000961_list -- Reinhard Zumkeller, Jun 05 2013
-
Mathematica
Select[Range[250],PrimeQ[DivisorSigma[0,#]]&] (* Harvey P. Dale, Sep 28 2011 *)
-
PARI
is(n)=isprime(isprimepower(n)+1) \\ Charles R Greathouse IV, Sep 16 2015
-
Python
from sympy import primepi, integer_nthroot, primerange def A009087(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k-1)[0]) for k in primerange(x.bit_length()+1))) return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025
Formula
p^(q-1), p, q primes.
Comments