cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009087 Numbers whose number of divisors is prime (i.e., numbers of the form p^(q-1) for primes p,q).

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Invented by the HR Automatic Concept Formation Program. If the sum of divisors is prime, then the number of divisors is prime, i.e., this is a supersequence of A023194.
A010055(a(n)) * A010051(A100995(a(n))+1) = 1. - Reinhard Zumkeller, Jun 06 2013

Examples

			tau(16)=5 and 5 is prime.
		

References

  • S. Colton, Automated Theory Formation in Pure Mathematics. New York: Springer (2002)

Crossrefs

Subsequence of A000961.

Programs

  • Haskell
    a009087 n = a009087_list !! (n-1)
    a009087_list = filter ((== 1) . a010051 . (+ 1) . a100995) a000961_list
    -- Reinhard Zumkeller, Jun 05 2013
    
  • Mathematica
    Select[Range[250],PrimeQ[DivisorSigma[0,#]]&] (* Harvey P. Dale, Sep 28 2011 *)
  • PARI
    is(n)=isprime(isprimepower(n)+1) \\ Charles R Greathouse IV, Sep 16 2015
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A009087(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k-1)[0]) for k in primerange(x.bit_length()+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

p^(q-1), p, q primes.