A141242 a(n) is the number of divisors of the n-th positive integer with a prime number of divisors. In other words, a(n) is the number of divisors of A009087(n).
2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
DivisorSigma[0, #] &@ Select[Range@ 500, PrimeQ@ DivisorSigma[0, #] &] (* Michael De Vlieger, Aug 19 2017 *)
-
Python
from sympy import primepi, integer_nthroot, primerange, factorint def A141242(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k-1)[0]) for k in primerange(x.bit_length()+1))) return list(factorint(bisection(f,n,n)).values())[0]+1 # Chai Wah Wu, Feb 22 2025
Extensions
Extended by Ray Chandler, Jun 25 2009
Comments