A141241 a(n) = number of divisors of n-th positive integer with a nonprime number of divisors. a(n) = the number of divisors of A139118(n).
1, 4, 4, 4, 6, 4, 4, 6, 6, 4, 4, 8, 4, 4, 6, 8, 6, 4, 4, 4, 9, 4, 4, 8, 8, 6, 6, 4, 10, 6, 4, 6, 8, 4, 8, 4, 4, 12, 4, 6, 4, 8, 6, 4, 8, 12, 4, 6, 6, 4, 8, 10, 4, 12, 4, 4, 4, 8, 12, 4, 6, 4, 4, 4, 12, 6, 6, 9, 8, 8, 8, 4, 12, 8, 4, 10, 8, 4, 6, 6, 4, 4, 16, 4, 4, 6, 4, 12, 8, 4, 8, 12, 4, 4, 8, 8, 8, 12, 4
Offset: 1
Keywords
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[DivisorSigma[0,Range[200]],!PrimeQ[#]&] (* Harvey P. Dale, Mar 20 2015 *)
-
PARI
for(i=1,200,if(!isprime(numdiv(i)),print1(numdiv(i)","))) \\ Franklin T. Adams-Watters, Apr 09 2009
-
Python
from sympy import primepi, integer_nthroot, primerange, divisor_count def A141241(n): def f(x): return int(n+sum(primepi(integer_nthroot(x,k-1)[0]) for k in primerange(x.bit_length()+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return divisor_count(m) # Chai Wah Wu, Feb 22 2025
Formula
Extensions
More terms from Franklin T. Adams-Watters, Apr 09 2009
Comments