cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009112 Areas of Pythagorean triangles: numbers which can be the area of a right triangle with integer sides.

Original entry on oeis.org

6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620, 1710, 1716, 1734, 1890
Offset: 1

Views

Author

Keywords

Comments

Number of terms < 10^k for increasing values of k: 1, 7, 34, 150, 636, 2536, 9757, 35987, 125350, 407538, ..., .
All terms are divisible by 6.
Also positive integers m with four (or more) different divisors (p, q, r, s) such that m = p*q = r*s and s = p+q+r. - Jose Aranda, Jun 28 2023

Examples

			30 belongs to the sequence as the area of the triangle (5,12,13) is 30.
6 is in the sequence because it is the area of the 3-4-5 triangle.
		

Crossrefs

A073120 is a subsequence.
See A256418 for the numbers 4*a(n).

Programs

  • Maple
    N:= 10^4: # to get all entries <= N
    A:= {}:
    for t from 1 to floor(sqrt(2*N)) do
       F:= select(f -> f[2]::odd,ifactors(2*t)[2]);
       d:= mul(f[1],f=F);
       for e from ceil(sqrt(t/d)) do
         s:= d*e^2;
         r:= sqrt(2*t*s);
         a:= (r+s)*(r+t)/2;
         if a > N then break fi;
         A:= A union {a};
       od
    od:
    A;
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 06 2015
  • Mathematica
    lst = {}; Do[ If[ IntegerQ[c = Sqrt[a^2 + b^2]], AppendTo[lst, a*b/2]; lst = Union@ lst], {a, 4, 180}, {b, a - 1, Floor[ Sqrt[a]], -1}]; Take[lst, 51] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2010 *)
    g@A_ := With[{div = Divisors@(2*A)}, AnyTrue[Sqrt@(Plus@@({#, 2*A/#}^2))& /@Take[div, Floor[(Length@div)/2]],IntegerQ]];
    Select[Range@5000, g@# &] (* Hans Rudolf Widmer, Sep 25 2023 *)
  • PARI
    is_A009112(n)={ my(N=1+#n=divisors(2*n)); for( i=1, N\2, issquare(n[i]^2+n[N-i]^2) & return(1)) } \\ M. F. Hasler, Dec 09 2010
    
  • Sage
    is_A009112 = lambda n: any(is_square(a**2+(2*n/a)**2) for a in divisors(2*n)) # D. S. McNeil, Dec 09 2010