cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A188158 Area A of the triangles such that A and the sides are integers.

Original entry on oeis.org

6, 12, 24, 30, 36, 42, 48, 54, 60, 66, 72, 84, 90, 96, 108, 114, 120, 126, 132, 144, 150, 156, 168, 180, 192, 198, 204, 210, 216, 234, 240, 252, 264, 270, 288, 294, 300, 306, 324, 330, 336, 360, 378, 384, 390, 396, 408, 420, 432, 456, 462, 468, 480, 486, 504, 510, 522, 528
Offset: 1

Views

Author

Michel Lagneau, Mar 22 2011

Keywords

Comments

The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. A given area often corresponds to more than one triangle; for example, a(9) = 60 for the triangles (a,b,c) = (6,25,29), (8,17,15), (13,13,10) and (13,13,24).
If only primitive integer triangles (that is, the lengths of the sides are coprime) are considered, then the possible areas are 6 times the terms in A083875. - T. D. Noe, Mar 23 2011

Examples

			a(3) = 24 because the area of the triangle whose sides are 4, 15, 13 is given by sqrt(p(p-4)(p-15)(p-13)) = 24, where p = (4 + 15 + 13)/2 = 16.
		

Crossrefs

Programs

  • Maple
    # storage of areas in T(i)
    T:=array(1..4000):nn:=100:k:=1:for a from 1
      to nn do: for b from 1 to nn do: for c from 1 to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c):   if x>0 then x1:=abs(x):s:=sqrt(x1) :else fi:if s=floor(s) then T[k]:=s:k:=k+1:else
      fi:od:od:od:
    # sort of T(i)
    for jj from 1 to k-1 do: ii:=jj:for k1 from  ii+1 to k-1 do:if T[ii]>T[k1] then ii:=k1:else fi:od: m:=T[jj]:T[jj]:=T[ii]:T[ii]:=m:od:liste:=convert(T,set):print(liste):
    # second program:
    isA188158 := proc(A::integer)
        local Asqr, s,a,b,c ;
        Asqr := A^2 ;
        for s in numtheory[divisors](Asqr) do
            if s^2> A then
            for a from 1 to s-1 do
                if modp(Asqr,s-a) = 0 then
                    for b from a to s-1 do
                        c := 2*s-a-b ;
                        if s*(s-a)*(s-b)*(s-c) = Asqr then
                            return true ;
                        end if;
                    end do:
                end if;
            end do:
            end if;
        end do:
        false ;
    end proc:
    for n from 3 to 600 do
        if isA188158(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, May 02 2018
  • Mathematica
    nn = 528; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] (* T. D. Noe, Mar 23 2011 *)

A024406 Ordered areas of primitive Pythagorean triangles.

Original entry on oeis.org

6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, 2340, 2574, 2730, 2730, 3036, 3570, 3900, 4080, 4290, 4620, 4914, 5016, 5610, 5814, 6090, 6630, 7140, 7440, 7854, 7956, 7980, 7980, 8970, 8976, 9690
Offset: 1

Views

Author

Keywords

Comments

This sequence also gives Fibonacci's congruous numbers (or congrua) divided by 4 with multiplicities, not regarding leg exchange in the underlying primitive Pythagorean triangle. See A258150 and the example. - Wolfdieter Lang, Jun 14 2015
The squarefree part of an entry which is not squarefree is a primitive congruent number from A006991 belonging to a Pythagorean triangle with rational (not all integer) side lengths (and its companion obtained by exchanging the legs). See the W. Lang link. - Wolfdieter Lang, Oct 25 2016

Examples

			a(6) = a(7) = 210 corresponds to the area (in some squared length unit) of the primitive Pythagorean triangles (21, 20, 29) and (35, 12, 37). Fibonacci's congruum C = 840 = 210*4 belongs to the two triples [x, y, z] = [29, 41, 1] and [37, 47, 23], solving x^2 + C = y^2 and x^2 - C = z^2. - _Wolfdieter Lang_, Jun 14 2015
a(5) = 180 = 6^2*5 lead to the primitive congruent number A006991(1) = 5 from the primitive Pythagorean triangle [9, 40, 41] after division by 6: [3/2, 20/3, 41/6]. See the link for the other nonsquarefree a(n) numbers. - _Wolfdieter Lang_, Oct 25 2016
		

Crossrefs

Formula

a(n) = 6*A020885(n). - Lekraj Beedassy, Apr 30 2004
a(n) = A121728(n)*A121729(n)/2. - M. F. Hasler, Apr 16 2020

A055527 Shortest other leg of a Pythagorean triangle with n as length of a leg.

Original entry on oeis.org

4, 3, 12, 8, 24, 6, 12, 24, 60, 5, 84, 48, 8, 12, 144, 24, 180, 15, 20, 120, 264, 7, 60, 168, 36, 21, 420, 16, 480, 24, 44, 288, 12, 15, 684, 360, 52, 9, 840, 40, 924, 33, 24, 528, 1104, 14, 168, 120, 68, 39, 1404, 72, 48, 33, 76, 840, 1740, 11, 1860, 960, 16, 48, 72
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Comments

From Alex Ratushnyak, Mar 30 2014: (Start)
Least positive k such that n^2 + k^2 is a square.
For odd n, a(n) <= 4*triangular((n-1)/2), because n^2 + (4 * triangular((n-1)/2))^2 = ((n^2+1)/2) ^ 2, which is a perfect square since n is odd.
For n = 4*k+2, a(n) <= 8*triangular(k), because (4k+2)^2 + (4*k*(k+1))^2 = (4*k^2 + 4*k + 2)^2. (End)

Crossrefs

See A082183 for a similar sequence involving triangular numbers.

Programs

  • Mathematica
    Table[k = 1; While[! IntegerQ[Sqrt[n^2 + k^2]], k++]; k, {n, 3, 100}] (* T. D. Noe, Apr 02 2014 *)

Formula

a(n) = sqrt(A055526(n)^2-n^2) = 2*A054436/n.

A024365 Areas of right triangles with coprime integer sides.

Original entry on oeis.org

6, 30, 60, 84, 180, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, 2340, 2574, 2730, 3036, 3570, 3900, 4080, 4290, 4620, 4914, 5016, 5610, 5814, 6090, 6630, 7140, 7440, 7854, 7956, 7980, 8970, 8976, 9690, 10374
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives areas A*B/2.
By Theorem 2 of Mohanty and Mohanty, all these numbers are primitive Pythagorean. - T. D. Noe, Sep 24 2013
This sequence also gives Fibonacci's congruous numbers (without multiplicity, in increasing order) divided by 4. See A258150. - Wolfdieter Lang, Jun 14 2015
The same as A024406 with duplicates removed. All terms are multiples of 6, cf. A258151. - M. F. Hasler, Jan 20 2019

Examples

			6 is in the sequence because it is the area of the 3-4-5 triangle.
a(7) = 210 corresponds to the two primitive Pythagorean triangles (21, 20, 29) and (35, 12, 37). See A024406. - _Wolfdieter Lang_, Jun 14 2015
		

Crossrefs

Cf. A009111, A009112, A024406 (with multiplicity), A258150, A024407, A258151 (terms divided by 6).
Subsequence of A073120 and A147778.

Programs

  • Mathematica
    nn = 22; (* nn must be even *) t = Union[Flatten[Table[If[GCD[u, v] == 1 && Mod[u, 2] + Mod[v, 2] == 1, u v (u^2 - v^2), 0], {u, nn}, {v, u - 1}]]]; Select[Rest[t], # < nn (nn^2 - 1) &] (* T. D. Noe, Sep 19 2013 *)
  • PARI
    select( {is_A024365(n)=my(N=1+#n=divisors(2*n)); for(i=1, N\2, gcd(n[i], n[N-i])==1 && issquare(n[i]^2+n[N-i]^2) && return(n[i]))}, [1..10^4]) \\ is_A024365 returns the smaller leg if n is a term, else 0. - M. F. Hasler, Jun 06 2024

Formula

Positive integers of the form u*v*(u^2 - v^2) where 2uv and u^2 - v^2 are coprime or, alternatively, where u, v are coprime and one of them is even.
a(n) = 6*A258151(n). - M. F. Hasler, Jan 20 2019

Extensions

Additional comments James R. Buddenhagen, Aug 10 2008 and from Max Alekseyev, Nov 12 2008
Edited by N. J. A. Sloane, Nov 20 2008 at the suggestion of R. J. Mathar

A256418 Congrua (possible solutions to the congruum problem): numbers k such that there are integers x, y and z with k = x^2-y^2 = z^2-x^2.

Original entry on oeis.org

24, 96, 120, 216, 240, 336, 384, 480, 600, 720, 840, 864, 960, 1080, 1176, 1320, 1344, 1536, 1920, 1944, 2016, 2160, 2184, 2400, 2520, 2880, 2904, 3000, 3024, 3360, 3456, 3696, 3840, 3960, 4056, 4320, 4704, 4896, 5280, 5376, 5400, 5544
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2015, following a suggestion from Robert Israel, Apr 03 2015

Keywords

Comments

k is a "congruum" iff k/4 is the area of a Pythagorean triangle, so these are the numbers 4*A009112.
Each congruum is a multiple of 24; it cannot be a square.
This entry incorporates many comments that were originally in A057102. A057103 and A055096 need to be checked.

Examples

			a(11)=840 since 840=29^2-1^2=41^2-29^2 (indeed also 840=37^2-23^2=47^2-37^2).
		

Crossrefs

Cf. A004431 for possible values of x in definition. Cf. A057103, A055096 for triangles of all congrua and values of x.

Programs

  • Mathematica
    r[n_] := Reduce[0 < y < x && 0 < x < z && n == x^2 - y^2 == z^2 - x^2, {x, y, z}, Integers];
    Reap[For[n = 24, n < 10^4, n += 24, rn = r[n]; If[rn =!= False, Print[n, " ", rn]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 25 2019 *)

A009111 List of ordered areas of Pythagorean triangles.

Original entry on oeis.org

6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 840, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620
Offset: 1

Views

Author

Keywords

Comments

All terms are divisible by 6.
Let k be even, k > 2, q = (k/2)^2 - 1, and b = (kq)/2. Then, for any k, b is a term of a(n). In other words, for any even k > 2, there is at least one such integer q > 2 that b = (kq)/2 and b is a term of a(n), while hypotenuse c = q + 2 (proved by Anton Mosunov). - Sergey Pavlov, Mar 02 2017
Let x be odd, x > 1, k == 0 (mod x), k > 0, y = (x-1)/2, q = ky + (ky/x), b = (kq)/2. Then b is a term of a(n), while hypotenuse c = q + k/x. As a special case of the above equation (k = x), for each odd k > 1 there exist such q and b that q = (k^2 - 1)/2, b = (kq)/2, and b is a term of a(n), while hypotenuse c = q + 1. - Sergey Pavlov, Mar 06 2017

Examples

			6 is in the sequence because it is the area of the 3-4-5 triangle.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, 2nd Ed., Chpt. XIV, "The Eternal Triangle", pp. 104-134, Dover Publ., NY, 1964.

Crossrefs

Programs

  • Mathematica
    t = {}; nn = 200; mx = Sqrt[2*nn - 1] (nn - 1)/2; Do[x = Sqrt[n^2 - d^2]; If[x > 0 && IntegerQ[x] && x > d && d*x/2 <= mx, AppendTo[t, d*x/2]], {n, nn}, {d, n - 1}]; t = Sort[t]; t (* T. D. Noe, Sep 23 2013 *)

Formula

Theorem: The number of pairs of integers a > b > 0 with ab(a^2-b^2) < n^2 is Cn + O(n^(2/3)) where C = (1/2)*Integral_{1..infinity} du/sqrt(u^3-u). [Granville] - N. J. A. Sloane, Feb 07 2008

A055523 Longest other leg of a Pythagorean triangle with n as length of a leg.

Original entry on oeis.org

4, 3, 12, 8, 24, 15, 40, 24, 60, 35, 84, 48, 112, 63, 144, 80, 180, 99, 220, 120, 264, 143, 312, 168, 364, 195, 420, 224, 480, 255, 544, 288, 612, 323, 684, 360, 760, 399, 840, 440, 924, 483, 1012, 528, 1104, 575, 1200, 624, 1300, 675, 1404, 728, 1512, 783
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

Programs

  • Maple
    seq(`if`(n::even, (n/2-1)*(n/2+1), (n-1)*(n+1)/2), n=3..100); # Robert Israel, Dec 16 2014
  • Mathematica
    a[n_Integer/;n>=3]:=(3 (n^2-2)+(-1)^(n+1) (n^2+2))/8 (* Todd Silvestri, Dec 16 2014 *)
  • PARI
    Vec(x^3*(x^3-3*x-4)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Sep 15 2014

Formula

a(n) = 2*A055522(n)/n = sqrt(A055524(n)^2-n^2).
a(2k) = (k-1)*(k+1), a(2k+1) = 2k*(k+1).
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: x^3*(x^3-3*x-4) / ((x-1)^3*(x+1)^3). - Colin Barker, Sep 15 2014
a(n) = (3*(n^2-2)+(-1)^(n+1)*(n^2+2))/8. - Todd Silvestri, Dec 16 2014
E.g.f.: 1 + (3*x^2/8 + 3*x/8 - 3/4)*exp(x) + (-x^2/8 + x/8 - 1/4)*exp(-x). - Robert Israel, Dec 16 2014

A055524 Longest other side of a Pythagorean triangle with n as length of one of the three sides (in fact n is a leg and a(n) the hypotenuse).

Original entry on oeis.org

5, 5, 13, 10, 25, 17, 41, 26, 61, 37, 85, 50, 113, 65, 145, 82, 181, 101, 221, 122, 265, 145, 313, 170, 365, 197, 421, 226, 481, 257, 545, 290, 613, 325, 685, 362, 761, 401, 841, 442, 925, 485, 1013, 530, 1105, 577, 1201, 626, 1301, 677, 1405, 730, 1513, 785
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

Programs

  • Mathematica
    A055524[n_] := (3*n^2-(-1)^n*(n^2-2)+6)/8; Array[A055524, 100, 3] (* or *)
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {5, 5, 13, 10, 25, 17}, 100] (* Paolo Xausa, Feb 29 2024 *)
  • PARI
    Vec(-x^3*(2*x^5+x^4-5*x^3-2*x^2+5*x+5)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Sep 15 2014

Formula

a(n) = sqrt(n^2+A055523(n)^2). a(2k) = k^2+1, a(2k+1) = k^2+(k+1)^2.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: -x^3*(2*x^5+x^4-5*x^3-2*x^2+5*x+5) / ((x-1)^3*(x+1)^3). - Colin Barker, Sep 15 2014
a(n) = (3*n^2+6-(n^2-2)*(-1)^n)/8. - Luce ETIENNE, Jul 11 2015

A073120 Areas of Pythagorean (or right) triangles with integer sides of the form (2mn, m^2 - n^2, m^2 + n^2).

Original entry on oeis.org

6, 24, 30, 60, 84, 96, 120, 180, 210, 240, 330, 336, 384, 480, 486, 504, 546, 630, 720, 840, 924, 960, 990, 1224, 1320, 1344, 1386, 1536, 1560, 1710, 1716, 1920, 1944, 2016, 2184, 2310, 2340, 2430, 2520, 2574, 2730, 2880, 3036, 3360, 3570, 3696, 3750, 3840
Offset: 1

Views

Author

Zak Seidov, Aug 25 2002

Keywords

Comments

Equivalently, integers of the form m*n*(m^2 - n^2) where m,n are positive integers with m > n. - James R. Buddenhagen, Aug 10 2008
The sequence giving the areas of all Pythagorean triangles is A009112 (sometimes called "Pythagorean numbers").
For example, the sequence does not contain 54, the area of the Pythagorean triangle with sides (9,12,15). - Robert Israel, Apr 03 2015
See also Theorem 2 of Mohanty and Mohanty. - T. D. Noe, Sep 24 2013

Examples

			6 = 3*4/2 is the area of the right triangle with sides 3 and 4.
84 = 7*24/2 is the area of the right triangle with sides 7 and 24.
		

Crossrefs

Programs

  • Mathematica
    nn = 16; t = Union[Flatten[Table[m*n*(m^2 - n^2), {m, 2, nn}, {n, m - 1}]]]; Select[t, # < nn*(nn^2 - 1) &]

Formula

a(n) = A057102(n) / 4. - Max Alekseyev, Nov 14 2008

Extensions

Description corrected by James R. Buddenhagen, Aug 10 2008, and by Max Alekseyev, Nov 12 2008
Edited by N. J. A. Sloane, Apr 06 2015

A055525 Shortest other side of a Pythagorean triangle having n as length of one of the three sides.

Original entry on oeis.org

4, 3, 3, 8, 24, 6, 12, 6, 60, 5, 5, 48, 8, 12, 8, 24, 180, 12, 20, 120, 264, 7, 7, 10, 36, 21, 20, 16, 480, 24, 44, 16, 12, 15, 12, 360, 15, 9, 9, 40, 924, 33, 24, 528, 1104, 14, 168, 14, 24, 20, 28, 72, 33, 33, 76, 40, 1740, 11, 11, 960, 16, 48, 16, 88, 2244, 32, 92, 24
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{a, c, k = 1, n2 = n^2}, While[ If[ k > n, !IntegerQ[c = Sqrt[n2 + k^2]], !IntegerQ[c = Sqrt[n2 + k^2]] && !IntegerQ[a = Sqrt[n2 - k^2]]], k++; If[k == n, k++]]; If[ IntegerQ@ c, k, Sqrt[n2 - a^2]]]; (* Robert G. Wilson v, Feb 23 2024 *)

Formula

From Robert G. Wilson v, Feb 23 2024: (Start)
sqrt(2*(n-1)) < a(n) < n^2/2.
If n = k*m, then a(n) <= k*a(m). (End)
Showing 1-10 of 27 results. Next