cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A057102 a(n) = 4 * A073120(n).

Original entry on oeis.org

24, 96, 120, 240, 336, 384, 480, 720, 840, 960, 1320, 1344, 1536, 1920, 1944, 2016, 2184, 2520, 2880, 3360, 3696, 3840, 3960, 4896, 5280, 5376, 5544, 6144, 6240, 6840, 6864, 7680, 7776, 8064, 8736, 9240, 9360, 9720, 10080, 10296, 10920, 11520, 12144
Offset: 1

Views

Author

Henry Bottomley, Aug 02 2000

Keywords

Comments

This sequence was originally described as the list of "congrua". But that name more properly refers to A256418.
Numbers of the form 4*(x^3*y-x*y^3) (where x,y are integers and x>=y). Squares of these numbers are of the form N^4-K^2 (where N belongs to A135786 and K to A135789 or A135790). Proof uses identity: (4(x^3y-xy^3))^2=(x^2+y^2)^4-(x^4 - 6x^2 y^2 + y^4)^2. - Artur Jasinski, Nov 29 2007, Nov 14 2008

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    select(`<=`,{seq(seq(4*(x^3*y-x*y^3),y=1..x-1),x=1..floor(sqrt(N/4+1)))},N);
    # If using Maple 11 or earlier, uncomment the following line
    # sort(convert(%, list)); # Robert Israel, Apr 06 2015
  • Mathematica
    a = {}; Do[Do[w = 4x^3y - 4x y^3; If[w > 0 && w < 10000, AppendTo[a, w]], {x, y, 1000}], {y, 1, 1000}]; Union[a] (* Artur Jasinski, Nov 29 2007 *)

Extensions

Edited by N. J. A. Sloane, Apr 06 2015 at the suggestion of Robert Israel, Apr 03 2015

A003273 Congruent numbers: positive integers k for which there exists a right triangle having area k and rational sides.

Original entry on oeis.org

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 69, 70, 71, 77, 78, 79, 80, 84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 101, 102, 103, 109, 110, 111, 112, 116, 117, 118, 119, 120, 124, 125, 126
Offset: 1

Views

Author

Keywords

Comments

Positive integers k such that x^2 + k*y^2 = z^2 and x^2 - k*y^2 = t^2 have simultaneous integer solutions. In other words, k is the difference of an arithmetic progression of three rational squares: (t/y)^2, (x/y)^2, (z/y)^2. Values of k corresponding to y=1 (i.e., an arithmetic progression of three integer squares) form A256418.
Tunnell shows that if a number is squarefree and congruent, then the ratio of the number of solutions of a pair of equations is 2. If the Birch and Swinnerton-Dyer conjecture is assumed, then determining whether a squarefree number k is congruent requires counting the solutions to a pair of equations. For odd k, see A072068 and A072069; for even k see A072070 and A072071.
If a number k is congruent, there are an infinite number of right triangles having rational sides and area k. All congruent numbers can be obtained by multiplying a primitive congruent number A006991 by a positive square number A000290.
Conjectured asymptotics (based on random matrix theory) on p. 453 of Cohen's book. - Steven Finch, Apr 23 2009

Examples

			24 is congruent because 24 is the area of the right triangle with sides 6,8,10.
5 is congruent because 5 is the area of the right triangle with sides 3/2, 20/3, 41/6 (although not of any right triangle with integer sides -- see A073120). - _Jonathan Sondow_, Oct 04 2013
		

References

  • Alter, Ronald; Curtz, Thaddeus B.; Kubota, K. K. Remarks and results on congruent numbers. Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pp. 27-35. Florida Atlantic Univ., Boca Raton, Fla., 1972. MR0349554 (50 #2047)
  • H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 454. [From Steven Finch, Apr 23 2009]
  • R. Cuculière, "Mille ans de chasse aux nombres congruents", in Pour la Science (French edition of 'Scientific American'), No. 7, 1987, pp. 14-18.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2, pp. 459-472, AMS Chelsea Pub. Providence RI 1999.
  • R. K. Guy, Unsolved Problems in Number Theory, D27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* The following Mathematica code assumes the truth of the Birch and Swinnerton-Dyer conjecture and uses the list of primitive congruent numbers produced by the Mathematica code in A006991: *)
    For[cLst={}; i=1, i<=Length[lst], i++, n=lst[[i]]; j=1; While[n j^2<=maxN, cLst=Union[cLst, {n j^2}]; j++ ]]; cLst

Extensions

Guy gives a table up to 1000.
Edited by T. D. Noe, Jun 14 2002
Comments revised by Max Alekseyev, Nov 15 2008
Comment corrected by Jonathan Sondow, Oct 10 2013

A009112 Areas of Pythagorean triangles: numbers which can be the area of a right triangle with integer sides.

Original entry on oeis.org

6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620, 1710, 1716, 1734, 1890
Offset: 1

Views

Author

Keywords

Comments

Number of terms < 10^k for increasing values of k: 1, 7, 34, 150, 636, 2536, 9757, 35987, 125350, 407538, ..., .
All terms are divisible by 6.
Also positive integers m with four (or more) different divisors (p, q, r, s) such that m = p*q = r*s and s = p+q+r. - Jose Aranda, Jun 28 2023

Examples

			30 belongs to the sequence as the area of the triangle (5,12,13) is 30.
6 is in the sequence because it is the area of the 3-4-5 triangle.
		

Crossrefs

A073120 is a subsequence.
See A256418 for the numbers 4*a(n).

Programs

  • Maple
    N:= 10^4: # to get all entries <= N
    A:= {}:
    for t from 1 to floor(sqrt(2*N)) do
       F:= select(f -> f[2]::odd,ifactors(2*t)[2]);
       d:= mul(f[1],f=F);
       for e from ceil(sqrt(t/d)) do
         s:= d*e^2;
         r:= sqrt(2*t*s);
         a:= (r+s)*(r+t)/2;
         if a > N then break fi;
         A:= A union {a};
       od
    od:
    A;
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 06 2015
  • Mathematica
    lst = {}; Do[ If[ IntegerQ[c = Sqrt[a^2 + b^2]], AppendTo[lst, a*b/2]; lst = Union@ lst], {a, 4, 180}, {b, a - 1, Floor[ Sqrt[a]], -1}]; Take[lst, 51] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2010 *)
    g@A_ := With[{div = Divisors@(2*A)}, AnyTrue[Sqrt@(Plus@@({#, 2*A/#}^2))& /@Take[div, Floor[(Length@div)/2]],IntegerQ]];
    Select[Range@5000, g@# &] (* Hans Rudolf Widmer, Sep 25 2023 *)
  • PARI
    is_A009112(n)={ my(N=1+#n=divisors(2*n)); for( i=1, N\2, issquare(n[i]^2+n[N-i]^2) & return(1)) } \\ M. F. Hasler, Dec 09 2010
    
  • Sage
    is_A009112 = lambda n: any(is_square(a**2+(2*n/a)**2) for a in divisors(2*n)) # D. S. McNeil, Dec 09 2010

A024365 Areas of right triangles with coprime integer sides.

Original entry on oeis.org

6, 30, 60, 84, 180, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, 2340, 2574, 2730, 3036, 3570, 3900, 4080, 4290, 4620, 4914, 5016, 5610, 5814, 6090, 6630, 7140, 7440, 7854, 7956, 7980, 8970, 8976, 9690, 10374
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives areas A*B/2.
By Theorem 2 of Mohanty and Mohanty, all these numbers are primitive Pythagorean. - T. D. Noe, Sep 24 2013
This sequence also gives Fibonacci's congruous numbers (without multiplicity, in increasing order) divided by 4. See A258150. - Wolfdieter Lang, Jun 14 2015
The same as A024406 with duplicates removed. All terms are multiples of 6, cf. A258151. - M. F. Hasler, Jan 20 2019

Examples

			6 is in the sequence because it is the area of the 3-4-5 triangle.
a(7) = 210 corresponds to the two primitive Pythagorean triangles (21, 20, 29) and (35, 12, 37). See A024406. - _Wolfdieter Lang_, Jun 14 2015
		

Crossrefs

Cf. A009111, A009112, A024406 (with multiplicity), A258150, A024407, A258151 (terms divided by 6).
Subsequence of A073120 and A147778.

Programs

  • Mathematica
    nn = 22; (* nn must be even *) t = Union[Flatten[Table[If[GCD[u, v] == 1 && Mod[u, 2] + Mod[v, 2] == 1, u v (u^2 - v^2), 0], {u, nn}, {v, u - 1}]]]; Select[Rest[t], # < nn (nn^2 - 1) &] (* T. D. Noe, Sep 19 2013 *)
  • PARI
    select( {is_A024365(n)=my(N=1+#n=divisors(2*n)); for(i=1, N\2, gcd(n[i], n[N-i])==1 && issquare(n[i]^2+n[N-i]^2) && return(n[i]))}, [1..10^4]) \\ is_A024365 returns the smaller leg if n is a term, else 0. - M. F. Hasler, Jun 06 2024

Formula

Positive integers of the form u*v*(u^2 - v^2) where 2uv and u^2 - v^2 are coprime or, alternatively, where u, v are coprime and one of them is even.
a(n) = 6*A258151(n). - M. F. Hasler, Jan 20 2019

Extensions

Additional comments James R. Buddenhagen, Aug 10 2008 and from Max Alekseyev, Nov 12 2008
Edited by N. J. A. Sloane, Nov 20 2008 at the suggestion of R. J. Mathar

A256418 Congrua (possible solutions to the congruum problem): numbers k such that there are integers x, y and z with k = x^2-y^2 = z^2-x^2.

Original entry on oeis.org

24, 96, 120, 216, 240, 336, 384, 480, 600, 720, 840, 864, 960, 1080, 1176, 1320, 1344, 1536, 1920, 1944, 2016, 2160, 2184, 2400, 2520, 2880, 2904, 3000, 3024, 3360, 3456, 3696, 3840, 3960, 4056, 4320, 4704, 4896, 5280, 5376, 5400, 5544
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2015, following a suggestion from Robert Israel, Apr 03 2015

Keywords

Comments

k is a "congruum" iff k/4 is the area of a Pythagorean triangle, so these are the numbers 4*A009112.
Each congruum is a multiple of 24; it cannot be a square.
This entry incorporates many comments that were originally in A057102. A057103 and A055096 need to be checked.

Examples

			a(11)=840 since 840=29^2-1^2=41^2-29^2 (indeed also 840=37^2-23^2=47^2-37^2).
		

Crossrefs

Cf. A004431 for possible values of x in definition. Cf. A057103, A055096 for triangles of all congrua and values of x.

Programs

  • Mathematica
    r[n_] := Reduce[0 < y < x && 0 < x < z && n == x^2 - y^2 == z^2 - x^2, {x, y, z}, Integers];
    Reap[For[n = 24, n < 10^4, n += 24, rn = r[n]; If[rn =!= False, Print[n, " ", rn]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 25 2019 *)

A147778 Positive integers of the form u*v*(u^2 - v^2) where u, v are coprime integers.

Original entry on oeis.org

6, 24, 30, 60, 84, 120, 180, 210, 240, 330, 336, 504, 546, 630, 720, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2016, 2184, 2310, 2340, 2520, 2574, 2730, 3036, 3360, 3570, 3696, 3900, 3960, 4080, 4290, 4620, 4896, 4914, 5016, 5280, 5544, 5610, 5814
Offset: 1

Views

Author

Max Alekseyev, Nov 12 2008

Keywords

Comments

Terms with even u or v form A024365. Squarefree terms form A147779.

Crossrefs

Subsequence of: A003273, A009112, A073120.

Programs

  • Maple
    N:= 10^5:
    A:= {}:
    for v from 1 to floor((N/2)^(1/3)) do
       for u from v+1 do
          if igcd(u,v) = 1 then
            t:= u*v*(u^2-v^2);
            if t > N then break fi;
            A:= A union {t};
          fi
        od
    od:
    A;
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 06 2015

A228873 a(n) = F(n) * F(n+1) * F(n+2) * F(n+3), the product of four consecutive Fibonacci numbers, A000045.

Original entry on oeis.org

6, 30, 240, 1560, 10920, 74256, 510510, 3495030, 23965920, 164237040, 1125770256, 7715953440, 52886430870, 362487682830, 2484530961360, 17029219589256, 116720030923320, 800010932051760, 5483356663145790, 37583485265670630, 257601041359736256
Offset: 1

Views

Author

T. D. Noe, Sep 24 2013

Keywords

Comments

Mohanty and Mohanty prove in Corollary 2.5 that these numbers are Pythagorean. The number a(n) is primitive Pythagorean if F(n) and F(n+1) have opposite parity. Every third number, starting at a(1) = 6, is not primitive Pythagorean.
Since a(n) = F(n+1)*F(n+2)*(F(n+2)^2 - F(n+1)^2), a(n) is in A073120. - Robert Israel, Apr 06 2015

Crossrefs

Cf. A000045 (Fibonacci numbers), A228874 (similar sequence for Lucas numbers).
Cf. A009112 (Pythagorean numbers), A024365, A073120.

Programs

  • Magma
    [Fibonacci(n)*Fibonacci(n+1)*Fibonacci(n+2)*Fibonacci(n+3): n in [1..30]]; // Vincenzo Librandi, Oct 04 2013
  • Maple
    seq(mul(combinat:-fibonacci(i),i=n..n+3),n=1..30); # Robert Israel, Apr 06 2015
  • Mathematica
    Table[Fibonacci[n] Fibonacci[n+1] Fibonacci[n+2] Fibonacci[n+3], {n, 25}]
    CoefficientList[Series[-6/((x - 1) (x^2 + 3 x + 1) (x^2 - 7 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2013 *)
    Times@@@Partition[Fibonacci[Range[30]],4,1] (* Harvey P. Dale, Dec 23 2013 *)
    LinearRecurrence[{5,15,-15,-5,1},{6,30,240,1560,10920},30] (* Harvey P. Dale, Jul 24 2021 *)

Formula

G.f.: -6*x/((x-1)*(x^2+3*x+1)*(x^2-7*x+1)). - Alois P. Heinz, Oct 02 2013
a(n+5) = 5*a(n+4)+15*a(n+3)-15*a(n+2)-5*a(n+1)+a(n). - Robert Israel, Apr 06 2015
a(n) = 2 * A000217(A059840(n+2)). - Diego Rattaggi, Jan 27 2021
Sum_{n>=1} 1/a(n) = (12-5*sqrt(5))/4. - Diego Rattaggi, Aug 16 2021
a(n) = 3 * Sum_{k=1..n} 2^(n-k)*F(k)^2*F(k+1)*F(k+2) (Seiffert, 2006). - Amiram Eldar, Jan 11 2022

A147779 Squarefree positive integers of the form u*v*(u^2-v^2) for some integer u,v.

Original entry on oeis.org

6, 30, 210, 330, 546, 2310, 2730, 3570, 4290, 5610, 6090, 6630, 7854, 8970, 9690, 10374, 10626, 13566, 18354, 19866, 22134, 25806, 26970, 39270, 43890, 51330, 51414, 52026, 54834, 56730, 59334, 66990, 68034, 71610, 72930, 74046, 75174
Offset: 1

Views

Author

Max Alekseyev, Nov 12 2008

Keywords

Crossrefs

Formula

Squarefree terms of A147778. Squarefree terms of A073120. Squarefree terms of A009112.
Terms of A006991 (primitive congruent numbers) corresponding to right triangles with integer sides.

A228874 a(n) = L(n) * L(n+1) * L(n+2) * L(n+3), the product of four consecutive Lucas numbers, A000032.

Original entry on oeis.org

24, 84, 924, 5544, 40194, 269874, 1864584, 12741324, 87431844, 599001144, 4106310474, 28143249834, 192901471224, 1322153872644, 9062210132844, 62113226746824, 425730613530834, 2918000448971874, 20000274149827944, 137083914357154044, 939587137457703924
Offset: 0

Views

Author

T. D. Noe, Sep 24 2013

Keywords

Comments

Mohanty and Mohanty prove in Corollary 2.6 that these numbers are Pythagorean. The number a(n) is primitive Pythagorean if Lucas(n) and Lucas(n+1) have opposite parity. Every third number, starting at a(1) = 84, is not primitive Pythagorean.
Since a(n) = L(n+1)*L(n+2)*(L(n+2)^2-L(n+1)^2), these numbers are in A073120, - Robert Israel, Apr 06 2015

Crossrefs

Cf. A000032 (Lucas numbers), A228873 (similar sequence for Fibonacci numbers).
Cf. A009112 (Pythagorean numbers), A024365, A073120.

Programs

  • Maple
    L:= n -> 2*combinat:-fibonacci(n+1)-combinat:-fibonacci(n):
    seq(mul(L(n+i),i=0..3),n=0..30); # Robert Israel, Apr 06 2015
  • Mathematica
    Table[LucasL[n] LucasL[n+1] LucasL[n+2] LucasL[n+3], {n, 0, 25}]
    Times@@@Partition[LucasL[Range[0,30]],4,1] (* Harvey P. Dale, Jul 11 2017 *)
  • PARI
    Vec(6*(x^4-4*x^3-24*x^2+6*x-4)/((x-1)*(x^2-7*x+1)*(x^2+3*x+1)) + O(x^100)) \\ Colin Barker, Oct 29 2013

Formula

G.f.: 6*(x^4-4*x^3-24*x^2+6*x-4) / ((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - Colin Barker, Oct 29 2013
From Robert Israel, Apr 06 2015: (Start)
a(n+5) = 5*a(n+4) + 15*a(n+3) - 15*a(n+2) - 5*a(n+1) + a(n).
a(n) = -A228873(n+3) + 4*A228873(n+2) + 24*A228873(n+1) - 6*A228873(n) + 4*A228873(n-1) for n >= 2. (End)
Sum_{n>=0} 1/a(n) = (10 - 3*sqrt(5))/60. - Diego Rattaggi, Aug 16 2021
Showing 1-9 of 9 results.