cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059840 a(n) = F(n)*F(n-1) if n odd otherwise F(n)*F(n-1)-1, where F = Fibonacci numbers A000045.

Original entry on oeis.org

0, 0, 2, 5, 15, 39, 104, 272, 714, 1869, 4895, 12815, 33552, 87840, 229970, 602069, 1576239, 4126647, 10803704, 28284464, 74049690, 193864605, 507544127, 1328767775, 3478759200, 9107509824, 23843770274, 62423800997, 163427632719, 427859097159, 1120149658760, 2932589879120
Offset: 1

Views

Author

N. J. A. Sloane, Feb 26 2001

Keywords

Crossrefs

Programs

  • GAP
    List([1..30],n->Sum([1..n-2],k->Fibonacci(k)*Fibonacci(k+2))); # Muniru A Asiru, Aug 09 2018
    
  • Magma
    F:=Fibonacci; [(n mod 2) eq 0 select F(n)*F(n-1)-1 else F(n)*F(n-1): n in [1..30]]; // G. C. Greubel, Jul 23 2019
    
  • Maple
    seq(coeff(series(x^3*(2-x)/((1-x^2)*(1-3*x+x^2)), x,n+1),x,n),n=1..30); # Muniru A Asiru, Aug 09 2018
  • Mathematica
    Table[If[OddQ[n],Fibonacci[n]Fibonacci[n-1],Fibonacci[n] Fibonacci[n-1]-1],{n,30}]  (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    a(n) = { fibonacci(n)*fibonacci(n-1) - (n%2 == 0) } \\ Harry J. Smith, Jun 29 2009
    
  • Sage
    a=(x^3*(2-x)/((1-x^2)*(1-3*x+x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 23 2019

Formula

G.f.: x^3*(2 - x)/((1 - x^2)*(1 - 3*x + x^2)). See a comment on A080144. - Wolfdieter Lang, Jul 30 2012
a(n) = Sum_{k=1..n-2} F(k)*F(k+2). - Alexander Adamchuk, May 17 2007
a(n+2) = (3*A001654(n) + A027941(n))/2, n >= 0. - Wolfdieter Lang, Jul 21 2012
a(n+2) = (3*(-1)^(n+1) - 5 + 2*Lucas(2*n + 3))/10, n >= 0. - Ehren Metcalfe, Aug 21 2017
a(n) = floor(1/(Sum_{k>=n} 1/Fibonacci(k)^2)) [Ohtsuka and Nakamura]. - Michel Marcus, Aug 09 2018
For n > 2, 2 * A000217(a(n)) = A228873(n-2). - Diego Rattaggi, Jan 27 2021

A228874 a(n) = L(n) * L(n+1) * L(n+2) * L(n+3), the product of four consecutive Lucas numbers, A000032.

Original entry on oeis.org

24, 84, 924, 5544, 40194, 269874, 1864584, 12741324, 87431844, 599001144, 4106310474, 28143249834, 192901471224, 1322153872644, 9062210132844, 62113226746824, 425730613530834, 2918000448971874, 20000274149827944, 137083914357154044, 939587137457703924
Offset: 0

Views

Author

T. D. Noe, Sep 24 2013

Keywords

Comments

Mohanty and Mohanty prove in Corollary 2.6 that these numbers are Pythagorean. The number a(n) is primitive Pythagorean if Lucas(n) and Lucas(n+1) have opposite parity. Every third number, starting at a(1) = 84, is not primitive Pythagorean.
Since a(n) = L(n+1)*L(n+2)*(L(n+2)^2-L(n+1)^2), these numbers are in A073120, - Robert Israel, Apr 06 2015

Crossrefs

Cf. A000032 (Lucas numbers), A228873 (similar sequence for Fibonacci numbers).
Cf. A009112 (Pythagorean numbers), A024365, A073120.

Programs

  • Maple
    L:= n -> 2*combinat:-fibonacci(n+1)-combinat:-fibonacci(n):
    seq(mul(L(n+i),i=0..3),n=0..30); # Robert Israel, Apr 06 2015
  • Mathematica
    Table[LucasL[n] LucasL[n+1] LucasL[n+2] LucasL[n+3], {n, 0, 25}]
    Times@@@Partition[LucasL[Range[0,30]],4,1] (* Harvey P. Dale, Jul 11 2017 *)
  • PARI
    Vec(6*(x^4-4*x^3-24*x^2+6*x-4)/((x-1)*(x^2-7*x+1)*(x^2+3*x+1)) + O(x^100)) \\ Colin Barker, Oct 29 2013

Formula

G.f.: 6*(x^4-4*x^3-24*x^2+6*x-4) / ((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - Colin Barker, Oct 29 2013
From Robert Israel, Apr 06 2015: (Start)
a(n+5) = 5*a(n+4) + 15*a(n+3) - 15*a(n+2) - 5*a(n+1) + a(n).
a(n) = -A228873(n+3) + 4*A228873(n+2) + 24*A228873(n+1) - 6*A228873(n) + 4*A228873(n-1) for n >= 2. (End)
Sum_{n>=0} 1/a(n) = (10 - 3*sqrt(5))/60. - Diego Rattaggi, Aug 16 2021
Showing 1-2 of 2 results.