A001654 Golden rectangle numbers: F(n) * F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719, 427859097160, 1120149658760
Offset: 0
A202453 Fibonacci self-fusion matrix, by antidiagonals.
1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 5, 6, 5, 5, 8, 8, 9, 9, 8, 8, 13, 13, 15, 15, 15, 13, 13, 21, 21, 24, 24, 24, 24, 21, 21, 34, 34, 39, 39, 40, 39, 39, 34, 34, 55, 55, 63, 63, 64, 64, 63, 63, 55, 55, 89, 89, 102, 102, 104, 104, 104, 102, 102, 89, 89, 144, 144, 165, 165
Offset: 1
Comments
The Fibonacci self-fusion matrix, F, is the fusion P**Q, where P and Q are the lower and upper triangular Fibonacci matrices. See A193722 for the definition of fusion of triangular arrays.
Every term F(n,k) of F is a product of two Fibonacci numbers; indeed,
F(n,k)=F(n)*F(k+1) if k is even;
F(n,k)=F(n+1)*F(k) if k is odd.
antidiagonal sums: (1,2,6,12,...), A054454
diagonal (1,2,6,15,...), A001654
diagonal (1,3,9,24,...), A064831
diagonal (2,5,15,39,..), A059840
diagonal (3,8,24,63,..), A080097
diagonal (5,13,39,102,...), A080143
diagonal (8,21,63,165,...), A080144
principal submatrix sums, A202462
All the principal submatrices are invertible, and the terms in the inverses are in {-3,-2,-1,0,1,2,3}.
Examples
Northwest corner: 1...1....2....3....5....8....13 1...2....3....5....8...13....21 2...3....6....9...15...24....39 3...5....9...15...24...39....63 5...8...15...24...40...64...104
Links
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
Programs
-
Mathematica
n = 12; Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]]; P = Transpose[Q]; F = P.Q; Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *) Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *) Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *) TableForm[Q] (* A202451, upper tri. Fibonacci array *) TableForm[P] (* A202452, lower tri. Fibonacci array *) TableForm[F] (* A202453, Fibonacci fusion array *) TableForm[FactorInteger[F]]
A059929 a(n) = Fibonacci(n)*Fibonacci(n+2).
0, 2, 3, 10, 24, 65, 168, 442, 1155, 3026, 7920, 20737, 54288, 142130, 372099, 974170, 2550408, 6677057, 17480760, 45765226, 119814915, 313679522, 821223648, 2149991425, 5628750624, 14736260450, 38580030723, 101003831722, 264431464440, 692290561601, 1812440220360
Offset: 0
Comments
Expansion of golden ratio (1+sqrt(5))/2 as an infinite product: phi = Product_{i>=0} (1+1/(Fibonacci(2*i+1) * Fibonacci(2*i+3)-1)) * (1-1/(Fibonacci(2*i+2) * Fibonacci(2i+4)+1)). - Thomas Baruchel, Nov 11 2003
Each of these is one short of or one over the square of a Fibonacci number (A007598). This means that a rectangle sized F(n) by F(n + 2) units can't be converted into a square with sides of length F(n + 1) units unless one square unit of material is added or removed. - Alonso del Arte, May 03 2011
These are the integer parts of the numerators of the numbers with continued fraction representations [1, 2, 2, 2, ...], [1, 1, 2, 2, 2, ...], [1, 1, 1, 2, 2, 2, ...], etc., that is, sqrt(2), (2+sqrt(2))/2, 3-sqrt(2), (10+sqrt(2))/7, (24-sqrt(2))/14, etc. - Geoffrey Caveney, May 03 2014
a(n) appears also as the third component of the square of [F(n), F(n+1), F(n+2), F(n+3)], for n >= 0, where F(n) = A000045(n), in the Clifford algebra Cl_2 over Euclidean 2-space. The whole quartet of sequences for this square is [-A248161(n), A079472(n+1), a(n), A121801(n+1)]. See the Oct 15 2014 comment in A147973 where also a reference is given. - Wolfdieter Lang, Nov 01 2014
Numbers with a continued fraction expansion with the repeating sequence of length n [1, 1, ..., 1, 2], n-1 ones followed by a single two, for n > = 1, appear to be equal to (F(n) + sqrt(a(n)))/F(n+1), where F(n) = A000045(n). - R. James Evans, Nov 21 2018
The preceding conjecture is true. Proof: For n >= 1 let c(n) := confrac(repeat(1^{n-1}, 2)) where 1^{k} denotes 1 taken k times. This can be computed, e.g. from [Perron, third and fourth eq. on p. 62], as c(n) = (F(n) + sqrt(F(n+1)^2 - (-1)^n)) / F(n+1), which is the conjectured formula because F(n+1)^2 - (-1)^n = a(n). - Wolfdieter Lang, Jan 05 2019
Examples
G.f. = 2*x + 3*x^2 + 10*x^3 + 24*x^4 + 65*x^5 + 168*x^6 + ... - _Michael Somos_, Mar 18 2022
References
- Oskar Perron, Die Lehre von den Kettenbrüchen, Band I, 3. Auflage, B. G. Teubner, Stuttgart, 1954, pp. 61-61.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2374 (first 501 terms from Harry J. Smith)
- Tim Jones (producer), Engineering Bits & Bytes: The Fibonacci Puzzle, Wayne State University College of Engineering (2011).
- Eric H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, arXiv:math/0304090 [math.CO], 2003.
- Marc Renault, Properties of the Fibonacci Sequence Under Various Moduli, Master's Thesis, Wake Forest University, 1996.
- Michel Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Crossrefs
Programs
-
GAP
a:=List([0..30],n->Fibonacci(n)*Fibonacci(n+2));; Print(a); # Muniru A Asiru, Jan 05 2019
-
Magma
[Fibonacci(n)*Fibonacci(n+2): n in [0..30]]; // Vincenzo Librandi, Jul 02 2014
-
Maple
with(combinat): a:=n->fibonacci(n)*fibonacci(n+2): seq(a(n), n=0..26); # Zerinvary Lajos, Oct 07 2007
-
Mathematica
Table[Fibonacci[n]*Fibonacci[n+2],{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)
-
PARI
a(n) = fibonacci(n)*fibonacci(n + 2) \\ Harry J. Smith, Jun 30 2009
-
Python
from sympy import fibonacci [fibonacci(n)*fibonacci(n+2) for n in range(30)] # Stefano Spezia, Jan 05 2019
-
Sage
[fibonacci(n)*fibonacci(n+2) for n in range(30)] # G. C. Greubel, Nov 21 2018
Formula
G.f.: (2*x-x^2) / ((1+x)*(1-3*x+x^2)).
Sum_{n>=1} 1/a(n) = 1.
Sum_{n>=1} (-1)^n/a(n) = 2 - sqrt(5).
Sum_{n>=1} 1/a(2n-1) = 1/phi = (sqrt(5) - 1)/2. - Franz Vrabec, Sep 15 2005
Sum_{n>=1} 1/a(2n) = (3 - sqrt(5))/2. - Franz Vrabec, Nov 30 2009
a(n) = ((7+3*sqrt(5))/10)*((3+sqrt(5))/2)^(n-1) + ((7-3*sqrt(5))/10)*((3-sqrt(5))/2)^(n-1) + (3/5)*(-1)^(n-1). - Tim Monahan, Aug 09 2011
a(n) = (Lucas(n+1)^2 - Fibonacci(n+1)^2)/4. - Vincenzo Librandi, Aug 02 2014
a(n) = F(n-2)*F(n) + F(n-1)*F(n) + F(n-2)*F(n+1) + F(n-1)*F(n+1), where F=A000045, F(-2)=-1, F(-1)=1. - Bruno Berselli, Nov 03 2015
a(n) = A035513(1,n-1)*A035513(3,n-1)/2 = A035513(1,n-1)*A035513(4,n-1)/3. - R. J. Mathar, Sep 04 2016
a(n)+a(n+1) = A001519(n+2). - R. J. Mathar, Oct 19 2021
a(n)+a(n+3) = 2*F(2n+5) = A126358(n+2). - Andrés Ventas, Oct 25 2021
Sum_{n>=1} Fibonacci(n+1)/a(n) = 2. - Amiram Eldar, Jan 11 2022
a(n) = a(-2-n) and a(n) + a(n+3) = 2*(a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Mar 18 2022
A080097 a(n) = Fibonacci(n+2)^2 - 1.
0, 3, 8, 24, 63, 168, 440, 1155, 3024, 7920, 20735, 54288, 142128, 372099, 974168, 2550408, 6677055, 17480760, 45765224, 119814915, 313679520, 821223648, 2149991423, 5628750624, 14736260448, 38580030723, 101003831720
Offset: 0
Comments
a(n), a(n)+1 and a(n)+2 are consecutive members of A049997.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Sergio Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-3,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> Fibonacci(n+2)^2 -1); # G. C. Greubel, Jul 23 2019
-
Magma
[Fibonacci(n+2)^2 -1: n in [0..30]]; // G. C. Greubel, Jul 23 2019
-
Mathematica
CoefficientList[Series[(3x+2x^2-x^3)/((1-x^2)(1-2x-2x^2+x^3)), {x, 0, 30}], x] Table[Fibonacci[n+2]^2-1,{n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2011 *) LinearRecurrence[{3,0,-3,1},{0,3,8,24},40] (* Harvey P. Dale, Nov 23 2024 *)
-
Maxima
A080097(n):=fib(n+2)^2-1$ makelist(A080097(n),n,0,30); /* Martin Ettl, Nov 13 2012 */
-
PARI
a(n)=fibonacci(n+2)^2-1 \\ Charles R Greathouse IV, Feb 06 2013
-
Sage
[fibonacci(n+2)^2 -1 for n in (0..30)] # G. C. Greubel, Jul 23 2019
Formula
If n is odd, then a(n) = F(n+1)*F(n+3) = F(n)*F(n+4) - 2, else a(n) = F(n)*F(n+4) = F(n+1)*F(n+3) - 2, where F(n) = Fibonacci numbers (A000045).
a(n) = (Lucas(2*n+4) - 2*(-1)^n - 5)/5.
O.g.f.: x*(3-x)/((1-x^2)*(1-3*x+x^2)) (see a comment on A080144). - Wolfdieter Lang, Jul 30 2012
Sum_{n>=1} 1/a(n) = (43 - 15*sqrt(5))/18 = 29/9 - 5*phi/3, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 20 2020
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - Joerg Arndt, Nov 13 2023
Extensions
Edited by Ralf Stephan, May 15 2005
A080144 a(n) = F(4)*F(n)*F(n+1) + F(5)*F(n+1)^2 if n odd, a(n) = F(4)*F(n)*F(n+1) + F(5)*F(n+1)^2 - F(5) if n even, where F(n) is the n-th Fibonacci number (A000045).
0, 8, 21, 63, 165, 440, 1152, 3024, 7917, 20735, 54285, 142128, 372096, 974168, 2550405, 6677055, 17480757, 45765224, 119814912, 313679520, 821223645, 2149991423, 5628750621, 14736260448, 38580030720, 101003831720
Offset: 0
Comments
The present sequence is a member of the m-family of sums b(m,n) := Sum_{k=1..n} F(k+m)*F(k) for m >= 0, n >= 0 (see the B. Cloitre formula given below (m=5)). These sums are (F(m)*A027941(n) + L(m)*A001654(n))/2, with F = A000045 and the L = A000032. Proof by induction on m using the recurrence. - Wolfdieter Lang, Jul 27 2012
The o.g.f. of b(m,n) is A(m,x) = x*(F(m+1) - F(m-1)*x)/((1-x^2)*(1-3*x+x^2)), m >= 0, with F(-1)=1. - Wolfdieter Lang, Jul 30 2012
b(m,n) = ((-1)^(n+1)*L(m) - 5*F(m) + 2*L(m + 2*n + 1))/10. - Ehren Metcalfe, Aug 21 2017
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
- Index entries for linear recurrences with constant coefficients, signature (3, 0, -3, 1).
Programs
-
GAP
F:=Fibonacci;; List([0..30], n-> (2*F(n+3)^2 -5-3*(-1)^n)/2); # G. C. Greubel, Jul 23 2019
-
Magma
F:=Fibonacci; [(2*F(n+3)^2 -5-3*(-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jul 23 2019
-
Mathematica
CoefficientList[Series[x*(8+5*x-3*x^2)/((1-x^2)*(1-2x-2x^2+x^3)), {x, 0, 30}], x] With[{F=Fibonacci}, Table[(2*F[n + 3]^2 -5-3*(-1)^n)/2, {n,0,30}]] (* G. C. Greubel, Jul 23 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0],Vec(x*(8-3*x)/((1-x^2)*(1-3*x+x^2)) )) \\ G. C. Greubel, Mar 04 2017
-
PARI
vector(30, n, n--; f=fibonacci; (2*f(n+3)^2 -5-3*(-1)^n)/2) \\ G. C. Greubel, Jul 23 2019
-
Sage
f=fibonacci; [(2*f(n+3)^2 -5-3*(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Jul 23 2019
Formula
G.f.: x*(8-3*x)/((1-x^2)*(1-3*x+x^2)) (see the comment section). - Wolfdieter Lang, Jul 30 2012
a(n) = (5*A027941(n) + 11*A001654(n))/2, n >= 0. See A080143 and A080097. See the comment section for the general formula for such sums. - Wolfdieter Lang, Jul 27 2012
a(n) = (2*Lucas(2*n + 6) + 11*(-1)^(n+1) - 25)/10. - Ehren Metcalfe, Aug 21 2017
a(n) = (2*Fibonacci(n+3)^2 - 5 - 3*(-1)^n)/2. - G. C. Greubel, Jul 23 2019
A081018 a(n) = (Lucas(4n+1)-1)/5, or Fibonacci(2n)*Fibonacci(2n+1), or A081017(n)/5.
0, 2, 15, 104, 714, 4895, 33552, 229970, 1576239, 10803704, 74049690, 507544127, 3478759200, 23843770274, 163427632719, 1120149658760, 7677619978602, 52623190191455, 360684711361584, 2472169789339634, 16944503814015855, 116139356908771352, 796030994547383610
Offset: 0
Comments
Another interpretation of this sequence is: nonnegative integers k such that (k + 1)^2 + (2k)^2 is a perfect square. So apart from a(0) = 0, a(n) + 1 and 2a(n) form the legs of a Pythagorean triple. - Nick Hobson, Jan 13 2007
Also solution y of Diophantine equation x^2 + 4*y^2 = k^2 for which x=y+1. - Carmine Suriano, Jun 23 2010
Also the index of the first of two consecutive heptagonal numbers whose sum is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 20 2014
Nonnegative integers k such that G(x) = k for some rational number x where G(x) = x/(1-x-x^2) is the generating function of the Fibonacci numbers. - Tom Edgar, Aug 24 2015
The integer solutions of the equation a(b+1) = (a-b)(a-b-1) or, equivalently, binomial(a, b) = binomial(a-1, b+1) are given by (a, b) = (a(n+1), A003482(n)=Fibonacci(2*n) * Fibonacci(2*n+3)) (Lind and Singmaster). - Tomohiro Yamada, May 30 2018
Examples
G.f. = 2*x + 15*x^2 + 104*x^3 + 714*x^4 + 4895*x^5 + 33552*x^6 + ...
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 28.
- Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Pridon Davlianidze, Problem B-1279, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 58, No. 4 (2020), p. 368; An Unusual Generalization, Solution to Problem B-1279 by J. N. Senadheera, ibid., Vol. 59, No. 4 (2021), pp. 370-371.
- Dae S. Hong, When is the Generating Function of the Fibonacci Numbers an Integer?, The College Mathematics Journal, Vol. 46, No. 2 (March 2015), pp. 110-112
- D. A. Lind, The quadratic field Q(sqrt(5)) and a certain diophantine equation, Fibonacci Quart., Vol. 6, No. 3 (1968), pp. 86-93.
- David Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fibonacci Quart., Vol. 13, No. 4 (1973), pp. 295-298.
- Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (Lucas(1,-1, 4*n+1)[2] -1)/5); # G. C. Greubel, Jul 14 2019
-
Magma
[(Lucas(4*n+1)-1)/5: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
-
Maple
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 25 do printf(`%d,`,(luc(4*n+1)-1)/5) od: # James Sellers, Mar 03 2003
-
Mathematica
(LucasL[4*Range[0,30]+1]-1)/5 (* or *) LinearRecurrence[{8,-8,1}, {0,2,15}, 30] (* G. C. Greubel, Aug 24 2015, modified Jul 14 2019 *)
-
PARI
concat(0, Vec(x*(2-x)/((1-x)*(1-7*x+x^2)) + O(x^30))) \\ Colin Barker, Dec 20 2014
-
Sage
[(lucas_number2(4*n+1,1,-1) -1)/5 for n in (0..30)] # G. C. Greubel, Jul 14 2019
Formula
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(3) + Fibonacci(7) + Fibonacci(11) + ... + Fibonacci(4n+3).
G.f.: x*(2-x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Mar 30 2012
E.g.f.: (1/5)^(3/2)*((1+phi^2)*exp(phi^4*x) - (1 + (1/phi^2))*exp(x/phi^4) - sqrt(5)*exp(x)), where 2*phi = 1 + sqrt(5). - G. C. Greubel, Aug 24 2015
From - Michael Somos, Aug 27 2015: (Start)
a(n) = -A081016(-1-n) for all n in Z.
0 = a(n) - 7*a(n+1) + a(n+2) - 1 for all n in Z.
0 = a(n)*a(n+2) - a(n+1)^2 + a(n+1) + 2 for all n in Z.
0 = a(n)*(a(n) -7*a(n+1) -1) + a(n+1)*(a(n+1) - 1) - 2 for all n in Z. (End)
a(n) = (k(n) + sqrt(k(n)*(4 + 5*k(n))))/2, where k(n) = A049684(n). - Stefano Spezia, Mar 11 2021
Product_{n>=1} (1 + 1/a(n)) = phi (A001622) (Davlianidze, 2020). - Amiram Eldar, Nov 30 2021
Extensions
More terms from James Sellers, Mar 03 2003
A097083 Positive values of k such that there is exactly one permutation p of (1,2,3,...,k) such that i+p(i) is a Fibonacci number for 1<=i<=k.
1, 2, 3, 5, 9, 15, 24, 39, 64, 104, 168, 272, 441, 714, 1155, 1869, 3025, 4895, 7920, 12815, 20736, 33552, 54288, 87840, 142129, 229970, 372099, 602069, 974169, 1576239, 2550408, 4126647, 6677056, 10803704, 17480760, 28284464, 45765225
Offset: 1
Keywords
Comments
Numbers k such that A097082(k) = 1. If f is a Fibonacci number and k < f <= 2k, then a permutation for f-k-1 may be extended to a permutation for k, with p(i) = f-i for f-k < i <= k. This explains the sparseness of this sequence. - David Wasserman, Dec 19 2007
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,0,-1).
Programs
-
Mathematica
a=b=c=d=0;Table[e=a+b+d+1;a=b;b=c;c=d;d=e,{n,100}] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *) CoefficientList[Series[x/((x - 1)*(x^2 + 1)*(x^2 + x - 1)), {x,0,50}], x] (* G. C. Greubel, Mar 05 2017 *) LinearRecurrence[{2,-1,1,0,-1},{1,2,3,5,9},50] (* Harvey P. Dale, Nov 09 2024 *)
-
PARI
x='x+O('x^50); Vec(x/((x - 1)*(x^2 + 1)*(x^2 + x - 1))) \\ G. C. Greubel, Mar 05 2017
Formula
It appears that {a(n)} satisfies a(1)=1, a(2)=2 and, for n>2, a(n) = F(n+2) - a(n-2) - 1, where {F(k)} is the sequence of Fibonacci numbers, i.e, that the sequence is the partial sums of A006498.
If the partial sum assumption is correct: a(n) = floor(phi^(n+3)/5), where phi=(1+sqrt(5))/2 = A001622, and a(n) = a(n-1) + a(n-2) + ( (n*(n+1)/2) mod 2). - Gary Detlefs, Mar 12 2011
From R. J. Mathar, Mar 13 2011: (Start)
If the partial sum assumption is correct: a(n)= +2*a(n-1) -a(n-2) +a(n-3) -a(n-5).
G.f.: x/( (x-1)*(x^2+1)*(x^2+x-1) ).
Conjecture: a(n) = floor(F(n+3)/sqrt(5)), where F(n) = A000045(n) are Fibonacci numbers. - Vladimir Reshetnikov, Nov 05 2015
Extensions
a(9) from Ray Chandler, Jul 29 2004
More terms from David Wasserman, Dec 19 2007
Terms > 90000 assuming the partial sums formula by Vladimir Joseph Stephan Orlovsky, Feb 26 2011
A080143 a(n) = F(3)*F(n)*F(n+1) + F(4)*F(n+1)^2 - F(4) if n even, F(3)*F(n)*F(n+1) + F(4)*F(n+1)^2 if n odd, where F(n) is the n-th Fibonacci number (A000045).
0, 5, 13, 39, 102, 272, 712, 1869, 4893, 12815, 33550, 87840, 229968, 602069, 1576237, 4126647, 10803702, 28284464, 74049688, 193864605, 507544125, 1328767775, 3478759198, 9107509824, 23843770272, 62423800997, 163427632717
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Falcon, On the Sequences of Products of Two k-Fibonacci Numbers, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-3,1).
Programs
-
GAP
F:=Fibonacci;; List([0..30], n-> (2*F(n+2)*F(n+3) -3 -(-1)^n)/2); # G. C. Greubel, Jul 23 2019
-
Magma
F:=Fibonacci; [(2*F(n+2)*F(n+3) -3 -(-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jul 23 2019
-
Mathematica
CoefficientList[Series[x*(5+3*x-2*x^2)/((1-x^2)*(1-2*x-2*x^2+x^3)), {x, 0, 30}], x] With[{F=Fibonacci}, Table[(2*F[n+2]*F[n+3] -3 -(-1)^n)/2, {n,0,30}]] (* G. C. Greubel, Jul 23 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(5+3*x-2*x^2)/((1-x^2)*(1- 2*x-2*x^2+x^3)))) \\ G. C. Greubel, Mar 05 2017
-
PARI
vector(30, n, n--; f=fibonacci; (2*f(n+2)*f(n+3) -3 -(-1)^n)/2) \\ G. C. Greubel, Jul 23 2019
-
Sage
f=fibonacci; [(2*f(n+2)*f(n+3) -3 -(-1)^n)/2 for n in (0..30)] # G. C. Greubel, Jul 23 2019
Formula
G.f.: x*(5-2*x)/((1-x^2)*(1-3*x+x^2)), see a comment on A080144 for A(4,x). - Wolfdieter Lang, Jul 30 2012
a(n) = (3*A027941(n) + 7*A001654(n))/2, n >= 0. Proof: from the preceding sum given by B. Cloitre via recurrence on the first factor under the sum. See also A080097 and A059840(n+2). - Wolfdieter Lang, Jul 27 2012
a(n) = (2*Lucas(2*n + 5) + 7*(-1)^(n+1) - 15)/10. - Ehren Metcalfe, Aug 21 2017
a(n) = (2*Fibonacci(n+2)*Fibonacci(n+3) - 3 - (-1)^n)/2. - G. C. Greubel, Jul 23 2019
A202503 Fibonacci self-fission matrix, by antidiagonals.
1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 9, 8, 8, 8, 13, 14, 15, 13, 13, 13, 21, 23, 24, 24, 21, 21, 21, 34, 37, 39, 39, 39, 34, 34, 34, 55, 60, 63, 64, 63, 63, 55, 55, 55, 89, 97, 102, 103, 104, 102, 102, 89, 89, 89, 144, 157, 165, 167, 168, 168, 165, 165, 144, 144, 144
Offset: 1
Comments
The Fibonacci self-fission matrix, F, is the fission P^^Q, where P and Q are the matrices given at A202502 and A202451. See A193842 for the definition of fission.
antidiagonal sums: (1, 3, 8, 18, 38, ...), A064831
diagonal (1, 5, 14, 39, ...), A119996
diagonal (2, 8, 23, 63, ...), A180664
diagonal (2, 5, 15, 39, ...), A059840
diagonal (3, 8, 24, 63, ...), A080097
diagonal (5, 13, 39, 102, ...), A080143
diagonal (8, 21, 63, 165, ...), A080144
All the principal submatrices are invertible, and the terms in the inverses are in {-3,-2,-1,0,1,2,3}.
Examples
Northwest corner: 1....1....2....3....5.....8....13...21 2....3....5....8...13....21....34...55 3....5....9...14...23....37....60...97 5....8...15...24...39....63...102...165 8...13...24...39...64...103...167...270
Links
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
Programs
-
Mathematica
n = 14; Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]]; Qt = Transpose[Q]; P1 = Qt - IdentityMatrix[n]; P = P1[[Range[2, n], Range[1, n]]]; F = P.Q; Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202502 as a sequence *) Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202451 as a sequence *) Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202503 as a sequence *) TableForm[P] (* A202502, modified lower triangular Fibonacci array *) TableForm[Q] (* A202451, upper tri. Fibonacci array *) TableForm[F] (* A202503, Fibonacci fission array *)
A193917 Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).
1, 1, 1, 1, 2, 3, 2, 3, 6, 9, 3, 5, 9, 15, 24, 5, 8, 15, 24, 40, 64, 8, 13, 24, 39, 64, 104, 168, 13, 21, 39, 63, 104, 168, 273, 441, 21, 34, 63, 102, 168, 272, 441, 714, 1155, 34, 55, 102, 165, 272, 440, 714, 1155, 1870, 3025, 55, 89, 165, 267, 440, 712, 1155
Offset: 0
Comments
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. (Fusion is defined at A193822; fission, at A193742; see A202503 and A202453 for infinite-matrix representations of fusion and fission.)
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First eight rows of A193917:
1
1...1
1...2...3
2...3...6...9
3...5...9...15...24
5...8...15..24...40...64
8...13..24..39...64...104..168
13..21..39..63...104..168..273..441
...
col 1: A000045
col 2: A000045
col 3: A022086
col 4: A022086
col 5: A022091
col 6: A022091
col 7: A022355
col 8: A022355
right edge, w(n,n): A064831
w(n,n-1): A001654
w(n,n-2): A064831
w(n,n-3): A059840
w(n,n-4): A080097
w(n,n-5): A080143
w(n,n-6): A080144
Examples
First six rows: 1 1...1 1...2...3 2...3...6....9 3...5...9....15...24 5...8...15...24...40...64
Programs
-
Mathematica
z = 12; p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}]; q[n_, x_] := p[n, x]; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193917 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193918 *)
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Magma
Maple
Mathematica
PARI
PARI
Python
Python
Formula
Extensions