cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A165815 Prime congruent numbers (A003273).

Original entry on oeis.org

5, 7, 13, 23, 29, 31, 37, 41, 47, 53, 61, 71, 79, 101, 103, 109, 127, 137, 149, 151, 157, 167, 173, 181, 191, 197, 199, 223, 229, 239, 257, 263, 269, 271, 277, 293, 311, 313, 317, 349, 353, 359, 367, 373, 383, 389, 397, 421, 431, 439, 457, 461, 463, 479, 487
Offset: 1

Views

Author

T. D. Noe, Sep 28 2009

Keywords

Comments

Heegner proved that every prime p with p = 5 or 7 (mod 8) is a congruent number. See A003628 for those primes.

References

  • Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Zeitschrift 56 (1952), 227-253.

Crossrefs

A268602 Numerator of the side lengths (legs in ascending order) of the easiest Pythagorean Triangle (with smallest hypotenuse) according to the congruent numbers A003273.

Original entry on oeis.org

3, 20, 41, 3, 4, 5, 35, 24, 337, 780, 323, 106921, 8, 21, 65, 4, 15, 17, 3, 40, 41, 7, 12, 25, 33, 140, 4901, 80155, 41496, 905141617, 6, 8, 10, 35, 48, 337, 99, 52780, 48029801, 5, 12, 13, 720, 8897, 2566561, 17, 24, 145, 450660, 777923, 605170417321, 1700, 5301, 1646021
Offset: 1

Views

Author

Martin Renner, Feb 08 2016

Keywords

Comments

Every three fractions x < y < z satisfy the Pythagorean equation x^2 + y^2 = z^2: (a(3*n-2)/A268603(3*n-2))^2 + (a(3*n-1)/A268603(3*n-1))^2 = (a(3*n)/A268603(3*n))^2.
The area A = x*y/2 of these Pythagorean triangles is a congruent number: A003273(n) = (1/2) * (a(3*n-2)/A268603(3*n-2)) * (a(3*n-1)/A268603(3*n-1)).

Examples

			The first congruent number is 5 and the associated right triangle with the side lengths x = 3/2, y = 20/3, z = 41/6 satisfies the Pythagorean equation (3/2)^2 + (20/3)^2 = (41/6)^2 and the area of this triangle equals 1/2*3/2*20/3 = 5.
		

Crossrefs

Extensions

a(14) corrected on Mar 14 2020
More terms from Jinyuan Wang, Apr 22 2023

A182429 First differences of congruent numbers A003273.

Original entry on oeis.org

1, 1, 6, 1, 1, 5, 1, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 2, 4, 1, 1, 5, 1, 1, 1, 1, 4, 1, 1, 1, 2, 4, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 6, 1, 1, 5, 1, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 6, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 28 2012

Keywords

Crossrefs

Cf. A003273.

A253278 Congruentfree numbers: positive integers that are not divisible by any congruent number (A003273).

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 11, 16, 17, 19, 27, 32, 33, 43, 51, 57, 59, 64, 67, 73, 81, 83, 89, 97, 99, 107, 113, 121, 128, 129, 131, 139, 146, 153, 163, 171, 177, 178, 179, 187, 193, 201, 209, 211, 227, 233, 241, 243, 249, 251, 256, 267, 281, 283, 289, 292, 297, 307
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 02 2015

Keywords

Examples

			8 is in this sequence because the positive integer 8 is not divisible by any of the first 3 congruent numbers 5, 6, 7.
		

Crossrefs

Programs

  • PARI
    isok(n,v) = {my(k=1); while (v[k] <= n, if (n % v[k] == 0, return (0)); k++;); return (1);}
    lista(nn) = {v = readvec("b003273.txt"); for (n=1, nn, if (isok(n, v), print1(n, ", ")););} \\ Michel Marcus, May 03 2015

Extensions

Corrected by Michel Marcus, May 03 2015. Edited by Wolfdieter Lang, May 05 2015

A268603 Denominator of the side lengths (legs in ascending order) of the easiest Pythagorean Triangle (with smallest hypotenuse) according to the congruent numbers A003273.

Original entry on oeis.org

2, 3, 6, 1, 1, 1, 12, 5, 60, 323, 30, 9690, 3, 2, 6, 1, 2, 2, 1, 3, 3, 2, 1, 2, 35, 3, 105, 20748, 3485, 72306780
Offset: 1

Views

Author

Martin Renner, Feb 08 2016

Keywords

Comments

Every three fractions x < y < z satisfy the Pythagorean equation x^2 + y^2 = z^2: (A268602(3*n-2)/a(3*n-2))^2 + (A268602(3*n-1)/a(3*n-1))^2 = (A268602(3*n)/a(3*n))^2.
The area A = x*y/2 of these Pythagorean triangles is a congruent number: A003273(n) = (1/2) * (A268602(3*n-2)/a(3*n-2)) * (A268602(3*n-1)/a(3*n-1)).

Examples

			The first congruent number is 5 and the associated right triangle with the side lengths x = 3/2, y = 20/3, z = 41/6 satisfies the Pythagorean equation (3/2)^2 + (20/3)^2 = (41/6)^2 and the area of this triangle equals 1/2*3/2*20/3 = 5.
		

Crossrefs

Extensions

a(14) corrected on Mar 14 2020

A290349 Least multiplier of n such that n*a(n) becomes a congruent number A003273.

Original entry on oeis.org

5, 3, 2, 5, 1, 1, 1, 3, 5, 2, 2, 2, 1, 1, 1, 5, 2, 3, 2, 1, 1, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 3, 5, 1, 2, 5, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 5, 3, 2, 1, 1, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 5, 1, 3, 2, 2, 1, 1, 1, 3, 3, 2, 2, 2, 1, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Frank M Jackson, Jul 28 2017

Keywords

Comments

Conditional on the Birch and Swinnerton-Dyer conjecture, it can be shown that the only members of this sequence are the Fibonacci numbers {1,2,3,5}. The underlying pattern of three consecutive 1's per octet shows that numbers congruent to {5,6,7} mod 8 are congruent numbers. Also if n is a square then a(n)=5. This is because all congruent numbers can be obtained by multiplying a primitive congruent number A006991 by a positive square number A000290 and 5 is the least congruent number.

Examples

			a(10)=2 as 10*2=20 and 10*3=30 are congruent numbers but 2 is the least multiplier.
		

Crossrefs

Programs

  • Mathematica
    Sfcore[n_] := Module[{m, fac=Select[FactorInteger[n], OddQ[#[[2]]] &]}, If[!SquareFreeQ[n], Times@@Table[fac[[m]][[1]], {m, Length[fac]}], n]]; CongruentQ[n_] := Module[{x, y, z, ok=False}, (Which[! SquareFreeQ[n], Null[], MemberQ[{5, 6, 7}, Mod[n, 8]], ok=True, OddQ[n]&&Length@Solve[x^2+2y^2+8z^2==n, {x, y, z}, Integers]==2Length@Solve[x^2+2y^2+32z^2==n, {x, y, z}, Integers], ok=True, EvenQ[n]&&Length@Solve[x^2+4y^2+8z^2==n/2, {x, y, z}, Integers]==2Length@Solve[x^2+4y^2+32z^2==n/2, {x, y, z}, Integers], ok=True]; ok)]; lst = {}; Do[AppendTo[lst, (Min[Select[n {1, 2, 3, 5}, CongruentQ[Sfcore[#]] &]])/n], {n, 1, 200}]; lst

A006991 Primitive congruent numbers.

Original entry on oeis.org

5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, 34, 37, 38, 39, 41, 46, 47, 53, 55, 61, 62, 65, 69, 70, 71, 77, 78, 79, 85, 86, 87, 93, 94, 95, 101, 102, 103, 109, 110, 111, 118, 119, 127, 133, 134, 137, 138, 141, 142, 143, 145, 149, 151, 154, 157, 158, 159
Offset: 1

Views

Author

Keywords

Comments

Squarefree terms of A003273.
Assuming the Birch and Swinnerton-Dyer conjecture, determining whether a number n is congruent requires counting the solutions to a pair of equations. For odd n, see A072068 and A072069; for even n see A072070 and A072071. The Mathematica program for this sequence uses variables defined in A072068, A072069, A072070, A072071. - T. D. Noe, Jun 13 2002

Examples

			6 is congruent because 6 is the area of the right triangle with sides 3,4,5. It is a primitive congruent number because it is squarefree.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 155.
  • R. K. Guy, Unsolved Problems in Number Theory, D27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* The following Mathematica code assumes the truth of the Birch and Swinnerton-Dyer conjecture and uses functions from A072068. *)
    For[lst={}; n=1, n<=maxN, n++, If[SquareFreeQ[n], If[(EvenQ[n]&&soln3[[n/2]]==2soln4[[n/2]])|| (OddQ[n]&&soln1[[(n+1)/2]]==2soln2[[(n+1)/2]]), AppendTo[lst, n]]]]; lst
    (* The following self-contained Mathematica code also assumes the truth of the Birch and Swinnerton-Dyer conjecture. *)
    CongruentQ[n_] := Module[{x, y, z, ok=False}, (Which[! SquareFreeQ[n], Null[], MemberQ[{5, 6, 7}, Mod[n, 8]], ok = True, OddQ@n&&Length@Solve[x^2+2y^2+8z^2==n, {x, y, z}, Integers]==2Length@Solve[x^2+2y^2+32z^2==n, {x, y, z}, Integers], ok=True, EvenQ@n&&Length@Solve[x^2+4y^2+8z^2==n/2, {x, y, z}, Integers]==2Length@ Solve[x^2 + 4 y^2 + 32 z^2 == n/2, {x, y, z}, Integers], ok=True]; ok)]; Select[Range[200], CongruentQ] (* Frank M Jackson, Jun 06 2016 *)

Extensions

More terms from T. D. Noe, Feb 26 2003

A062695 Squarefree n such that the elliptic curve n*y^2 = x^3 - x arising in the "congruent number" problem has rank 2.

Original entry on oeis.org

34, 41, 65, 137, 138, 145, 154, 161, 194, 210, 219, 226, 257, 265, 291, 299, 313, 323, 330, 353, 371, 386, 395, 410, 426, 434, 442, 457, 465, 505, 514, 546, 561, 602, 609, 651, 658, 674, 689, 721, 723, 731, 761, 777, 793, 866, 889, 890, 905, 915, 985, 987, 995
Offset: 1

Views

Author

Noam D. Elkies, Jul 04 2001

Keywords

Comments

These n are precisely the primitive congruent numbers (A006991) with n==1, n==2, or n==3 (mod 8). - T. D. Noe, Aug 02 2006

Crossrefs

Programs

  • PARI
    r(n)=ellanalyticrank(ellinit([0,0,0,-n^2,0]))[1]
    for(n=1,1e3,if(issquarefree(n)&&r(n)==2,print1(n", "))) \\ Charles R Greathouse IV, Sep 01 2011; corrected by Frank M Jackson, Aug 04 2016

Extensions

More terms from Jinyuan Wang, Dec 12 2020

A248397 Noncongruent squarefree numbers n with A248394(n)/d(n) = 1, where d(n) = A000005(n).

Original entry on oeis.org

1, 3, 33, 51, 57, 59, 83, 139, 177, 187, 209, 211, 267, 321, 339, 345, 379, 385, 411, 451, 489, 499, 515, 555, 587, 595, 649, 659, 665, 681, 707, 803, 811, 827, 835, 899, 921, 969, 1001, 1059, 1099, 1137, 1171, 1211, 1219, 1235, 1259, 1267, 1281, 1315, 1329, 1363
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A073120 Areas of Pythagorean (or right) triangles with integer sides of the form (2mn, m^2 - n^2, m^2 + n^2).

Original entry on oeis.org

6, 24, 30, 60, 84, 96, 120, 180, 210, 240, 330, 336, 384, 480, 486, 504, 546, 630, 720, 840, 924, 960, 990, 1224, 1320, 1344, 1386, 1536, 1560, 1710, 1716, 1920, 1944, 2016, 2184, 2310, 2340, 2430, 2520, 2574, 2730, 2880, 3036, 3360, 3570, 3696, 3750, 3840
Offset: 1

Views

Author

Zak Seidov, Aug 25 2002

Keywords

Comments

Equivalently, integers of the form m*n*(m^2 - n^2) where m,n are positive integers with m > n. - James R. Buddenhagen, Aug 10 2008
The sequence giving the areas of all Pythagorean triangles is A009112 (sometimes called "Pythagorean numbers").
For example, the sequence does not contain 54, the area of the Pythagorean triangle with sides (9,12,15). - Robert Israel, Apr 03 2015
See also Theorem 2 of Mohanty and Mohanty. - T. D. Noe, Sep 24 2013

Examples

			6 = 3*4/2 is the area of the right triangle with sides 3 and 4.
84 = 7*24/2 is the area of the right triangle with sides 7 and 24.
		

Crossrefs

Programs

  • Mathematica
    nn = 16; t = Union[Flatten[Table[m*n*(m^2 - n^2), {m, 2, nn}, {n, m - 1}]]]; Select[t, # < nn*(nn^2 - 1) &]

Formula

a(n) = A057102(n) / 4. - Max Alekseyev, Nov 14 2008

Extensions

Description corrected by James R. Buddenhagen, Aug 10 2008, and by Max Alekseyev, Nov 12 2008
Edited by N. J. A. Sloane, Apr 06 2015
Showing 1-10 of 42 results. Next