cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A263573 Intersection of A024365 and A129912.

Original entry on oeis.org

6, 30, 60, 180, 210, 2310, 4620, 60060, 510510, 10810800, 116396280, 200560490130, 401120980260
Offset: 1

Views

Author

Bill McEachen, Oct 21 2015

Keywords

Comments

The two sequences involve areas of primitive Pythagorean triples and primorial products. Intersections are only considered once (no repeats). Conjecture: the sequence is infinite.
Conjecture: The next two entries are a(12) = 200560490130, a(13) = 401120980260.
From G. C. Greubel, Dec 29 2015: (Start)
6|a(n) for n>=1,
30|a(n) for n>=2,
a(n)/6 = {1, 5, 10, 30, 35, 385, 770, 10010, ...} is a subset of values found in A008706.
(End)
a(12) and a(13) confirmed. a(14) > 2*10^31, if it exists. - Giovanni Resta, Mar 31 2017

Examples

			A024365 begins {6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, ...}.
A129912 begins {1, 2, 6, 12, 30, 60, 180, 210, 360, 420, 1260, 2310, 2520, ...}.
So, common entries encountered are {6, 30, 60, 180, 210, 2310, ...}.
Specifically, we see that A024365(1) = A129912(3), A024365(2) = A129912(5), A024365(3) = A129912(6), A024365(5) = A129912(7).
These are then the first four entries of the sequence (6, 30, 60, 180).
		

Crossrefs

Programs

  • Mathematica
    s = 6 Take[Sort[(Times @@ #)/12 & /@ ({Times @@ #, (Last[#]^2 - First[#]^2)/2} & /@ Select[Subsets[Range[1, 3600, 2], {2}], GCD @@ # == 1 &])], 1800]; f[m_] := f[m] = Union[Times @@@ Subsets[FoldList[Times, 1, Prime[Range[m]]]]][[1 ;; 100]]; f[10]; f[m = 11]; While[f[m] != f[m - 1], m++]; t = f[m]; Intersection[s, t] (* Michael De Vlieger, Oct 22 2015, after Harvey P. Dale at A020885 and Jean-François Alcover at A129912 *) (* or *)
    ok[n_] := Block[{a, f = Power @@@ FactorInteger[2 n]}, SelectFirst[ Subsets[f, {1, Floor[ Length[f]/2]}], (a = Times @@ #; IntegerQ@ Sqrt[a^2 + (2 n/a)^2]) &, {}] != {}]; pr[n_] := Product[ Prime[n+1-i]^i, {i, n}];  upto[mx_] := Block[{ric, j=1}, ric[n_, ip_, ex_] := If[n < mx, Block[{p = Prime[ip + 1]}, If[ex == 1 && ok[n], Sow@ n]; ric[n p^ex, ip + 1, ex]; If[ex > 1, ric[n p^(ex - 1), ip+1, ex-1]]]]; Sort@ Reap[ While[pr[j] < mx, ric[2^j, 1, j]; j++]][[2, 1]]]; upto[10^12] (* much faster, Giovanni Resta, Mar 31 2017 *)
  • PARI
    \\note: code does not generate the sequence, just checks for a matching PPT entry
    genit(area)={myMax=floor(sqrt(2*area));i5=myMax;endless=0;soln=List();
    while(i5>=2,dun=0;j=2.*myVal/i5; k=floor(j); if(j>k, dun=1 );if(dun<1,
    c=sqrt(i5^2 + k^2);w=floor(c);if(c>w,dun=1); if(dun<1,if(gcd(k,i5)>1,dun=1 ));
    if(dun<1,listput(soln,k); listput(soln,i5);listput(soln,w);listsort(soln);
    print("soln a,b,c = ", soln[1],"  ",soln[2],"  ",soln[3] );dun=2;break ));
    i5--;endless++);if(i5<=2&&dun<1,print("no solution ") );if(i5>2&&dun<2,
    print("max iteration limit was hit ",endless) );print (endless);}
    (C++)
    #include 
    #include 
    using namespace std;
    int main(){ifstream fin1,fin2;
    int myValue,myValue2,ptr,fptr,i5,j5;
    unsigned long list1[9999]={0};
    unsigned long list2[999]={0};
    unsigned long final[31]={0};
    fin1.open("A024365.txt"); fin2.open("A129912.txt");
    ptr=1;
    while(ptr<9999)
    {fin1>> myValue;fin1.get();list1[ptr]=myValue;
        if(ptr<999)
           {fin2>> myValue2;fin2.get();list2[ptr]=myValue2;}
        ptr++;}
    fin1.close();fin2.close();fptr=1;
    for(i5=1;i5<9990;i5++)
    {for(j5=1;j5<999;j5++){
    if(list1[i5]==list2[j5] )
    {
        fptr++;
        if(fptr>30){break;}
        final[fptr]=list1[i5];
        cout << final[fptr] << ",";
        break;
    }}if(fptr>30){break;}}}

Extensions

a(12)-a(13) from Giovanni Resta, Mar 31 2017

A188158 Area A of the triangles such that A and the sides are integers.

Original entry on oeis.org

6, 12, 24, 30, 36, 42, 48, 54, 60, 66, 72, 84, 90, 96, 108, 114, 120, 126, 132, 144, 150, 156, 168, 180, 192, 198, 204, 210, 216, 234, 240, 252, 264, 270, 288, 294, 300, 306, 324, 330, 336, 360, 378, 384, 390, 396, 408, 420, 432, 456, 462, 468, 480, 486, 504, 510, 522, 528
Offset: 1

Views

Author

Michel Lagneau, Mar 22 2011

Keywords

Comments

The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. A given area often corresponds to more than one triangle; for example, a(9) = 60 for the triangles (a,b,c) = (6,25,29), (8,17,15), (13,13,10) and (13,13,24).
If only primitive integer triangles (that is, the lengths of the sides are coprime) are considered, then the possible areas are 6 times the terms in A083875. - T. D. Noe, Mar 23 2011

Examples

			a(3) = 24 because the area of the triangle whose sides are 4, 15, 13 is given by sqrt(p(p-4)(p-15)(p-13)) = 24, where p = (4 + 15 + 13)/2 = 16.
		

Crossrefs

Programs

  • Maple
    # storage of areas in T(i)
    T:=array(1..4000):nn:=100:k:=1:for a from 1
      to nn do: for b from 1 to nn do: for c from 1 to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c):   if x>0 then x1:=abs(x):s:=sqrt(x1) :else fi:if s=floor(s) then T[k]:=s:k:=k+1:else
      fi:od:od:od:
    # sort of T(i)
    for jj from 1 to k-1 do: ii:=jj:for k1 from  ii+1 to k-1 do:if T[ii]>T[k1] then ii:=k1:else fi:od: m:=T[jj]:T[jj]:=T[ii]:T[ii]:=m:od:liste:=convert(T,set):print(liste):
    # second program:
    isA188158 := proc(A::integer)
        local Asqr, s,a,b,c ;
        Asqr := A^2 ;
        for s in numtheory[divisors](Asqr) do
            if s^2> A then
            for a from 1 to s-1 do
                if modp(Asqr,s-a) = 0 then
                    for b from a to s-1 do
                        c := 2*s-a-b ;
                        if s*(s-a)*(s-b)*(s-c) = Asqr then
                            return true ;
                        end if;
                    end do:
                end if;
            end do:
            end if;
        end do:
        false ;
    end proc:
    for n from 3 to 600 do
        if isA188158(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, May 02 2018
  • Mathematica
    nn = 528; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] (* T. D. Noe, Mar 23 2011 *)

A009112 Areas of Pythagorean triangles: numbers which can be the area of a right triangle with integer sides.

Original entry on oeis.org

6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620, 1710, 1716, 1734, 1890
Offset: 1

Views

Author

Keywords

Comments

Number of terms < 10^k for increasing values of k: 1, 7, 34, 150, 636, 2536, 9757, 35987, 125350, 407538, ..., .
All terms are divisible by 6.
Also positive integers m with four (or more) different divisors (p, q, r, s) such that m = p*q = r*s and s = p+q+r. - Jose Aranda, Jun 28 2023

Examples

			30 belongs to the sequence as the area of the triangle (5,12,13) is 30.
6 is in the sequence because it is the area of the 3-4-5 triangle.
		

Crossrefs

A073120 is a subsequence.
See A256418 for the numbers 4*a(n).

Programs

  • Maple
    N:= 10^4: # to get all entries <= N
    A:= {}:
    for t from 1 to floor(sqrt(2*N)) do
       F:= select(f -> f[2]::odd,ifactors(2*t)[2]);
       d:= mul(f[1],f=F);
       for e from ceil(sqrt(t/d)) do
         s:= d*e^2;
         r:= sqrt(2*t*s);
         a:= (r+s)*(r+t)/2;
         if a > N then break fi;
         A:= A union {a};
       od
    od:
    A;
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 06 2015
  • Mathematica
    lst = {}; Do[ If[ IntegerQ[c = Sqrt[a^2 + b^2]], AppendTo[lst, a*b/2]; lst = Union@ lst], {a, 4, 180}, {b, a - 1, Floor[ Sqrt[a]], -1}]; Take[lst, 51] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2010 *)
    g@A_ := With[{div = Divisors@(2*A)}, AnyTrue[Sqrt@(Plus@@({#, 2*A/#}^2))& /@Take[div, Floor[(Length@div)/2]],IntegerQ]];
    Select[Range@5000, g@# &] (* Hans Rudolf Widmer, Sep 25 2023 *)
  • PARI
    is_A009112(n)={ my(N=1+#n=divisors(2*n)); for( i=1, N\2, issquare(n[i]^2+n[N-i]^2) & return(1)) } \\ M. F. Hasler, Dec 09 2010
    
  • Sage
    is_A009112 = lambda n: any(is_square(a**2+(2*n/a)**2) for a in divisors(2*n)) # D. S. McNeil, Dec 09 2010

A024406 Ordered areas of primitive Pythagorean triangles.

Original entry on oeis.org

6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, 2340, 2574, 2730, 2730, 3036, 3570, 3900, 4080, 4290, 4620, 4914, 5016, 5610, 5814, 6090, 6630, 7140, 7440, 7854, 7956, 7980, 7980, 8970, 8976, 9690
Offset: 1

Views

Author

Keywords

Comments

This sequence also gives Fibonacci's congruous numbers (or congrua) divided by 4 with multiplicities, not regarding leg exchange in the underlying primitive Pythagorean triangle. See A258150 and the example. - Wolfdieter Lang, Jun 14 2015
The squarefree part of an entry which is not squarefree is a primitive congruent number from A006991 belonging to a Pythagorean triangle with rational (not all integer) side lengths (and its companion obtained by exchanging the legs). See the W. Lang link. - Wolfdieter Lang, Oct 25 2016

Examples

			a(6) = a(7) = 210 corresponds to the area (in some squared length unit) of the primitive Pythagorean triangles (21, 20, 29) and (35, 12, 37). Fibonacci's congruum C = 840 = 210*4 belongs to the two triples [x, y, z] = [29, 41, 1] and [37, 47, 23], solving x^2 + C = y^2 and x^2 - C = z^2. - _Wolfdieter Lang_, Jun 14 2015
a(5) = 180 = 6^2*5 lead to the primitive congruent number A006991(1) = 5 from the primitive Pythagorean triangle [9, 40, 41] after division by 6: [3/2, 20/3, 41/6]. See the link for the other nonsquarefree a(n) numbers. - _Wolfdieter Lang_, Oct 25 2016
		

Crossrefs

Formula

a(n) = 6*A020885(n). - Lekraj Beedassy, Apr 30 2004
a(n) = A121728(n)*A121729(n)/2. - M. F. Hasler, Apr 16 2020

A009111 List of ordered areas of Pythagorean triangles.

Original entry on oeis.org

6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 840, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620
Offset: 1

Views

Author

Keywords

Comments

All terms are divisible by 6.
Let k be even, k > 2, q = (k/2)^2 - 1, and b = (kq)/2. Then, for any k, b is a term of a(n). In other words, for any even k > 2, there is at least one such integer q > 2 that b = (kq)/2 and b is a term of a(n), while hypotenuse c = q + 2 (proved by Anton Mosunov). - Sergey Pavlov, Mar 02 2017
Let x be odd, x > 1, k == 0 (mod x), k > 0, y = (x-1)/2, q = ky + (ky/x), b = (kq)/2. Then b is a term of a(n), while hypotenuse c = q + k/x. As a special case of the above equation (k = x), for each odd k > 1 there exist such q and b that q = (k^2 - 1)/2, b = (kq)/2, and b is a term of a(n), while hypotenuse c = q + 1. - Sergey Pavlov, Mar 06 2017

Examples

			6 is in the sequence because it is the area of the 3-4-5 triangle.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, 2nd Ed., Chpt. XIV, "The Eternal Triangle", pp. 104-134, Dover Publ., NY, 1964.

Crossrefs

Programs

  • Mathematica
    t = {}; nn = 200; mx = Sqrt[2*nn - 1] (nn - 1)/2; Do[x = Sqrt[n^2 - d^2]; If[x > 0 && IntegerQ[x] && x > d && d*x/2 <= mx, AppendTo[t, d*x/2]], {n, nn}, {d, n - 1}]; t = Sort[t]; t (* T. D. Noe, Sep 23 2013 *)

Formula

Theorem: The number of pairs of integers a > b > 0 with ab(a^2-b^2) < n^2 is Cn + O(n^(2/3)) where C = (1/2)*Integral_{1..infinity} du/sqrt(u^3-u). [Granville] - N. J. A. Sloane, Feb 07 2008

A073120 Areas of Pythagorean (or right) triangles with integer sides of the form (2mn, m^2 - n^2, m^2 + n^2).

Original entry on oeis.org

6, 24, 30, 60, 84, 96, 120, 180, 210, 240, 330, 336, 384, 480, 486, 504, 546, 630, 720, 840, 924, 960, 990, 1224, 1320, 1344, 1386, 1536, 1560, 1710, 1716, 1920, 1944, 2016, 2184, 2310, 2340, 2430, 2520, 2574, 2730, 2880, 3036, 3360, 3570, 3696, 3750, 3840
Offset: 1

Views

Author

Zak Seidov, Aug 25 2002

Keywords

Comments

Equivalently, integers of the form m*n*(m^2 - n^2) where m,n are positive integers with m > n. - James R. Buddenhagen, Aug 10 2008
The sequence giving the areas of all Pythagorean triangles is A009112 (sometimes called "Pythagorean numbers").
For example, the sequence does not contain 54, the area of the Pythagorean triangle with sides (9,12,15). - Robert Israel, Apr 03 2015
See also Theorem 2 of Mohanty and Mohanty. - T. D. Noe, Sep 24 2013

Examples

			6 = 3*4/2 is the area of the right triangle with sides 3 and 4.
84 = 7*24/2 is the area of the right triangle with sides 7 and 24.
		

Crossrefs

Programs

  • Mathematica
    nn = 16; t = Union[Flatten[Table[m*n*(m^2 - n^2), {m, 2, nn}, {n, m - 1}]]]; Select[t, # < nn*(nn^2 - 1) &]

Formula

a(n) = A057102(n) / 4. - Max Alekseyev, Nov 14 2008

Extensions

Description corrected by James R. Buddenhagen, Aug 10 2008, and by Max Alekseyev, Nov 12 2008
Edited by N. J. A. Sloane, Apr 06 2015

A024407 Areas of more than one primitive Pythagorean triangle.

Original entry on oeis.org

210, 2730, 7980, 71610, 85470, 106260, 114114, 234780, 341880, 420420, 499590, 1563660, 1647030, 1857240, 2042040, 3423420, 3666390, 6587490, 7393470, 8514660, 9279270, 12766110, 13123110, 17957940, 18820830, 23393370, 23573550, 29099070, 29274630, 29609580
Offset: 1

Views

Author

Keywords

Comments

Among a(1) to a(30), only a(23) = 13123110 has multiplicity 3, the others have multiplicity 2. The three primitive Pythagorean triangles corresponding to a(23) are [4485, 5852, 7373], [3059, 8580, 9109] and [19019, 1380, 19069]. Leg exchange is not taken into account. - Wolfdieter Lang, Jun 15 2015
The area 13123110 of multiplicity three was discovered by C. L. Shedd in 1945, cf. Beiler, Gardner and Weisstein. - M. F. Hasler, Jan 20 2019

Examples

			The first repeated terms in A024406 are:
   A024406(6) = A024406(7) = 210 = a(1),
   A024406(24) = A024406(25) = 2730 = a(2),
   A024406(42) = A024406(43) = 7980 = a(3). - _M. F. Hasler_, Jan 20 2019
		

References

  • A. H. Beiler: The Eternal Triangle. Ch. 14 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, 1966, p. 127.
  • M. Gardner: The Sixth Book of Mathematical Games from Scientific American. University of Chicago Press, 1984, pp. 160-161.

Crossrefs

Formula

Terms occurring more than once in A024406 listed exactly once: { n = A024406(k): n = A024406(k+m), m > 0 }. - M. F. Hasler, Jan 20 2019, edited by David A. Corneth, Jan 21 2019

Extensions

a(29) and a(30) added by Wolfdieter Lang, Jun 14 2015

A258150 Triangle of Fibonacci's congruum (congruous) numbers divided by 24 based on primitive Pythagorean triangles. Areas divided by 6 of these triangles.

Original entry on oeis.org

1, 0, 5, 10, 0, 14, 0, 35, 0, 30, 35, 0, 0, 0, 55, 0, 105, 0, 154, 0, 91, 84, 0, 220, 0, 260, 0, 140, 0, 231, 0, 390, 0, 0, 0, 204, 165, 0, 455, 0, 0, 0, 595, 0, 285, 0, 429, 0, 770, 0, 935, 0, 836, 0, 385, 286, 0, 0, 0, 1190, 0, 1330, 0, 0, 0, 506
Offset: 2

Views

Author

Wolfdieter Lang, Jun 11 2015

Keywords

Comments

The problem is: given a square, find a positive integer that, whether added to or subtracted from that square, yields a square. That is, both x^2 + C = y^2 and x^2 - C = z^2. Equivalently: z^2 + C = x^2 and x^2 + C = y^2 (squares in arithmetic progression). This is treated in Fibonacci's 'The book of squares' (Liber Quadratorum (1225) but for rational x,y,z). See the Sigler reference, Proposition 14, pp. 53-74 (note that the formulation of this problem on p. 53 is not correct, 'from a square' should read 'from the same square'). See also van der Waerden, pp. 40-42, and A. Weil, pp. 13-14. The desired number C is called a congruum by Fibonacci (a congruous number in Sigler's translation).
For the history of this problem, see Dickson, pp. 459-472 (he uses the (misleading) term congruent number).
The following solution is based on primitive Pythagorean triangles. (Fibonacci's solution is based on sums of odd squares.) The triangle T(n, m) = 24*C(n, m) will have 0's for those (n, m) not leading to primitive Pythagorean triples.
Addition of the two equations, substitution of y = u + v > 0 and z = |u - v| and division by 2 leads to x^2 = u^2 + v^2. Consider primitive Pythagorean triples (u, v, x) with even v which are pairwise relatively prime. Then also GCD(u,v,x) = 1. A common factor f for u, v and x would lead to a multiplication by f^2 on both sides of the two equations. For primitive Pythagorean triples see A249866. One has u = n^2 - m^2, v = 2*n*m and x = n^2 + m^2 with GCD(n, m) = 1 , n > m >= 1, n + m odd. Then C = C(n, m) = 4*n*m*(n^2 - m^2) = 2*v(n, m)*u(n, m). This is four times the area of the Pythagorean triangle. C is divisible by 4! = 24 (see A020885). Define T(n, m) = C(n, m)/4!, for 2 <= m + 1 <= n. This is the area of the corresponding primitive Pythagorean triangle divided by 6.
The corresponding x = x(n, m), y = y(n, m) and z(n, m) number triangles are given in A222946, A225949 and A258149 respectively.
T(n, m) = n*m*(n^2 - m^2)/6, for m = 1, 2, ..., n-1, has for n >= 2 the minimum value at m = 1, and the next largest value appears for n >= 3 at m = n-1. Note all (n, m) pairs are considered here. The proof of the first part is easy. The proof of T(n, m) - T(n, n-1) > 0, for m = 2, 3, ..., n-2, and n >= 3, is equivalent to n^2*(m-2) + 3*n > m^3 +1 and this is easy to prove with n >= m+2 and m >= 2. Therefore the triangle T(n, m) with 0's attains for even n the smallest nonzero row entry at m = 1, and for odd n the smallest nonzero row entry appears at m = n-1 (last entry).
This allows us to find (after solution of two cubic equations for even and odd n, named ne = ne(N) and no = no(N)) a row number nmin(N) = max(ne(n), no(N)) such that N will not appear in any row n > nmin(N).
The original problem posed to Fibonacci by Giovanni di Palermo (Master John of Palermo) was to find a [rational] square that when increased or decreased by 5 gives a square. Fibonacci gave the solution in his Liber Quadratorum in Proposition 17 (see Sigler, pp. 77-81) as x^2 = (41/12)^2 = 1681/144, y^2 = (49/12)^2 = 2401/144 and z^2 = (31/12)^2 = 961/144. This corresponds to the integer quartet (C; x, y, z) = (720; 41, 49, 31) corresponding to the primitive Pythagorean triple [9, 40, 41]. See the examples for (n, m) = (5, 4).
The numbers without zeros, in nondecreasing order, are given in A020885 = A024406/6.
Comments from Eric Snyder, Feb 07 2023: (Start)
If m+n > 3 and not divisible by 3, then m+n | T(n,m).
Additionally, if 2n-1 > 3 and not divisible by 3, then 2n-1 = 6k+-1, and T(n,n-1) = (2n-1)*P(-+k), where P(-+k) is a generalized pentagonal number (A001318). For example, T(6,5) = 11*P(-2) = 11*5.
T(n,n-1) = A000330(n-1) for n>=2. (End)

Examples

			The triangle T(n, m) begins:
n\m   1   2   3   4    5   6    7   8   9  10    11
2:    1
3:    0   5
4:   10   0  14
5:    0  35   0  30
6:   35   0   0   0   55
7:    0 105   0 154    0  91
8:   84   0 220   0  260   0  140
9:    0 231   0 390    0   0    0 204
10: 165   0 455   0    0   0  595   0 285
11:   0 429   0 770    0 935    0 836   0 385
12: 286   0   0   0 1190   0 1330   0   0   0   506
...
The smallest nonzero number for each row with even n is T(n, 1), and for odd n it is T(n, n-1).
The above mentioned nmin(N) will for N = 300 be 12.
Therefore, no number > 300 will appear for rows with n > 12.
-----------------------------------------------------
The corresponding quartets (C; x, y, z) are:
n=2:  (24; 5, 7, 1),
n=3:  (120; 13, 17, 7),
n=4:  (240; 17, 23, 7), (336; 25, 31, 17),
n=5:  (840; 29, 41, 1), (720; 41, 49, 31),
n=6:  (840; 37, 47, 23), (1320; 61, 71, 49),
n=7:  (2520; 53, 73, 17), (3696; 65, 89, 23),
      (2184; 85, 97, 71),
n=8:  (2016; 65, 79, 47), (5280; 73, 103, 7),
      (6240; 89, 119, 41), (3360; 113, 127, 97),
n=9:  (5544; 85, 113, 41), (9360; 97, 137, 7),
      (4896; 145, 161, 127),
n=10: (3960; 101, 119, 79), (10920; 109, 151, 31),
      (14280; 149, 191, 89), (6840; 181, 199, 161),
n=11: (10296; 125, 161, 73), (18480; 137, 193, 17),
      (22440; 157, 217, 47), (20064; 185, 233, 119),
      (9240; 221, 241, 199),
n=12: (6864; 145, 167, 119), (28560; 169, 239, 1),
      (31920; 193, 263, 73), (12144; 265, 287, 241),
...
-----------------------------------------------------
The corresponding primitive Pythagorean triples
(u, v, x) are:
n=2:  [3, 4, 5],
n=3:  [5, 12, 13],
n=4:  [15, 8, 17], [7, 24, 25],
n=5:  [21, 20, 29],[9, 40, 41],
n=6:  [35, 12, 37], [11, 60, 61],
n=7:  [45, 28, 53], [33, 56, 65],
      [13, 84, 85],
n=8:  [63, 16, 65], [55, 48, 73],
      [39, 80, 89], [15, 112, 113],
n=9:  [77, 36, 85], [65, 72, 97],
      [17, 144, 145],
n=10: [99, 20, 101], [91, 60, 109],
      [51, 140, 149], [19, 180, 181],
n=11: [117, 44, 125], [105, 88, 137],
      [85, 132, 157], [57, 176, 185],
      [21, 220, 221],
n=12: [143, 24, 145], [119, 120, 169],
      [95, 168, 193], [23, 264, 265],
...
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 2, 1920, pp. 459-472.
  • L. E. Sigler, Leonardo Pisano, Fibonacci, The book of squares, Academic Press, 1987.
  • B. L. van der Waerden, A History of Algebra, Springer, 1985, pp. 40-42.
  • André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, pp. 13-14.

Crossrefs

Programs

  • Mathematica
    T[n_, m_] /; 2 <= m+1 <= n && OddQ[n+m] && CoprimeQ[n, m] := n*m*(n^2 - m^2)/6; T[, ] = 0; Table[T[n, m], {n, 2, 12}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, Jun 16 2015, after given formula *)

Formula

T(n, m) = n*m*(n^2 - m^2)/6 if 2 <= m+1 <= n, n+m odd, GCD(n, m) = 1 and 0 otherwise.

A147778 Positive integers of the form u*v*(u^2 - v^2) where u, v are coprime integers.

Original entry on oeis.org

6, 24, 30, 60, 84, 120, 180, 210, 240, 330, 336, 504, 546, 630, 720, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2016, 2184, 2310, 2340, 2520, 2574, 2730, 3036, 3360, 3570, 3696, 3900, 3960, 4080, 4290, 4620, 4896, 4914, 5016, 5280, 5544, 5610, 5814
Offset: 1

Views

Author

Max Alekseyev, Nov 12 2008

Keywords

Comments

Terms with even u or v form A024365. Squarefree terms form A147779.

Crossrefs

Subsequence of: A003273, A009112, A073120.

Programs

  • Maple
    N:= 10^5:
    A:= {}:
    for v from 1 to floor((N/2)^(1/3)) do
       for u from v+1 do
          if igcd(u,v) = 1 then
            t:= u*v*(u^2-v^2);
            if t > N then break fi;
            A:= A union {t};
          fi
        od
    od:
    A;
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 06 2015

A228873 a(n) = F(n) * F(n+1) * F(n+2) * F(n+3), the product of four consecutive Fibonacci numbers, A000045.

Original entry on oeis.org

6, 30, 240, 1560, 10920, 74256, 510510, 3495030, 23965920, 164237040, 1125770256, 7715953440, 52886430870, 362487682830, 2484530961360, 17029219589256, 116720030923320, 800010932051760, 5483356663145790, 37583485265670630, 257601041359736256
Offset: 1

Views

Author

T. D. Noe, Sep 24 2013

Keywords

Comments

Mohanty and Mohanty prove in Corollary 2.5 that these numbers are Pythagorean. The number a(n) is primitive Pythagorean if F(n) and F(n+1) have opposite parity. Every third number, starting at a(1) = 6, is not primitive Pythagorean.
Since a(n) = F(n+1)*F(n+2)*(F(n+2)^2 - F(n+1)^2), a(n) is in A073120. - Robert Israel, Apr 06 2015

Crossrefs

Cf. A000045 (Fibonacci numbers), A228874 (similar sequence for Lucas numbers).
Cf. A009112 (Pythagorean numbers), A024365, A073120.

Programs

  • Magma
    [Fibonacci(n)*Fibonacci(n+1)*Fibonacci(n+2)*Fibonacci(n+3): n in [1..30]]; // Vincenzo Librandi, Oct 04 2013
  • Maple
    seq(mul(combinat:-fibonacci(i),i=n..n+3),n=1..30); # Robert Israel, Apr 06 2015
  • Mathematica
    Table[Fibonacci[n] Fibonacci[n+1] Fibonacci[n+2] Fibonacci[n+3], {n, 25}]
    CoefficientList[Series[-6/((x - 1) (x^2 + 3 x + 1) (x^2 - 7 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2013 *)
    Times@@@Partition[Fibonacci[Range[30]],4,1] (* Harvey P. Dale, Dec 23 2013 *)
    LinearRecurrence[{5,15,-15,-5,1},{6,30,240,1560,10920},30] (* Harvey P. Dale, Jul 24 2021 *)

Formula

G.f.: -6*x/((x-1)*(x^2+3*x+1)*(x^2-7*x+1)). - Alois P. Heinz, Oct 02 2013
a(n+5) = 5*a(n+4)+15*a(n+3)-15*a(n+2)-5*a(n+1)+a(n). - Robert Israel, Apr 06 2015
a(n) = 2 * A000217(A059840(n+2)). - Diego Rattaggi, Jan 27 2021
Sum_{n>=1} 1/a(n) = (12-5*sqrt(5))/4. - Diego Rattaggi, Aug 16 2021
a(n) = 3 * Sum_{k=1..n} 2^(n-k)*F(k)^2*F(k+1)*F(k+2) (Seiffert, 2006). - Amiram Eldar, Jan 11 2022
Showing 1-10 of 16 results. Next