A263573 Intersection of A024365 and A129912.
6, 30, 60, 180, 210, 2310, 4620, 60060, 510510, 10810800, 116396280, 200560490130, 401120980260
Offset: 1
Examples
A024365 begins {6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, ...}. A129912 begins {1, 2, 6, 12, 30, 60, 180, 210, 360, 420, 1260, 2310, 2520, ...}. So, common entries encountered are {6, 30, 60, 180, 210, 2310, ...}. Specifically, we see that A024365(1) = A129912(3), A024365(2) = A129912(5), A024365(3) = A129912(6), A024365(5) = A129912(7). These are then the first four entries of the sequence (6, 30, 60, 180).
Programs
-
Mathematica
s = 6 Take[Sort[(Times @@ #)/12 & /@ ({Times @@ #, (Last[#]^2 - First[#]^2)/2} & /@ Select[Subsets[Range[1, 3600, 2], {2}], GCD @@ # == 1 &])], 1800]; f[m_] := f[m] = Union[Times @@@ Subsets[FoldList[Times, 1, Prime[Range[m]]]]][[1 ;; 100]]; f[10]; f[m = 11]; While[f[m] != f[m - 1], m++]; t = f[m]; Intersection[s, t] (* Michael De Vlieger, Oct 22 2015, after Harvey P. Dale at A020885 and Jean-François Alcover at A129912 *) (* or *) ok[n_] := Block[{a, f = Power @@@ FactorInteger[2 n]}, SelectFirst[ Subsets[f, {1, Floor[ Length[f]/2]}], (a = Times @@ #; IntegerQ@ Sqrt[a^2 + (2 n/a)^2]) &, {}] != {}]; pr[n_] := Product[ Prime[n+1-i]^i, {i, n}]; upto[mx_] := Block[{ric, j=1}, ric[n_, ip_, ex_] := If[n < mx, Block[{p = Prime[ip + 1]}, If[ex == 1 && ok[n], Sow@ n]; ric[n p^ex, ip + 1, ex]; If[ex > 1, ric[n p^(ex - 1), ip+1, ex-1]]]]; Sort@ Reap[ While[pr[j] < mx, ric[2^j, 1, j]; j++]][[2, 1]]]; upto[10^12] (* much faster, Giovanni Resta, Mar 31 2017 *)
-
PARI
\\note: code does not generate the sequence, just checks for a matching PPT entry genit(area)={myMax=floor(sqrt(2*area));i5=myMax;endless=0;soln=List(); while(i5>=2,dun=0;j=2.*myVal/i5; k=floor(j); if(j>k, dun=1 );if(dun<1, c=sqrt(i5^2 + k^2);w=floor(c);if(c>w,dun=1); if(dun<1,if(gcd(k,i5)>1,dun=1 )); if(dun<1,listput(soln,k); listput(soln,i5);listput(soln,w);listsort(soln); print("soln a,b,c = ", soln[1]," ",soln[2]," ",soln[3] );dun=2;break )); i5--;endless++);if(i5<=2&&dun<1,print("no solution ") );if(i5>2&&dun<2, print("max iteration limit was hit ",endless) );print (endless);} (C++) #include
#include using namespace std; int main(){ifstream fin1,fin2; int myValue,myValue2,ptr,fptr,i5,j5; unsigned long list1[9999]={0}; unsigned long list2[999]={0}; unsigned long final[31]={0}; fin1.open("A024365.txt"); fin2.open("A129912.txt"); ptr=1; while(ptr<9999) {fin1>> myValue;fin1.get();list1[ptr]=myValue; if(ptr<999) {fin2>> myValue2;fin2.get();list2[ptr]=myValue2;} ptr++;} fin1.close();fin2.close();fptr=1; for(i5=1;i5<9990;i5++) {for(j5=1;j5<999;j5++){ if(list1[i5]==list2[j5] ) { fptr++; if(fptr>30){break;} final[fptr]=list1[i5]; cout << final[fptr] << ","; break; }}if(fptr>30){break;}}}
Extensions
a(12)-a(13) from Giovanni Resta, Mar 31 2017
Comments