A098714 Only one Pythagorean triangle of this perimeter exists.
12, 24, 30, 36, 40, 48, 56, 70, 72, 80, 96, 108, 112, 126, 140, 150, 154, 156, 160, 176, 182, 192, 198, 200, 204, 208, 216, 220, 224, 228, 234, 260, 276, 286, 306, 308, 320, 324, 340, 348, 350, 352, 364, 372, 374, 378, 380, 384, 392, 400, 416, 418, 442, 444
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 5000 terms from Hugo Pfoertner)
- Project Euler, Problem 75: Singular integer right triangles.
- Index entries related to Pythagorean triples.
Programs
-
PARI
forstep(p=12,444,2,d=0;for(k=1,p-3,for(j=k+1,p-k-1,if(j*j+k*k==(p-j-k)^2,d++)));if(d==1,print1(p,", "))) \\ Hugo Pfoertner, Mar 29 2018
Formula
n = a + b + c; c^2=a^2+b^2; a, b, c (sides) and n (perimeter) are integers; for a given "n" there is only a single triple of a, b and c.
Extensions
More terms from Hugo Pfoertner and Ray Chandler, Oct 27 2004
New name from Hugo Pfoertner, Mar 29 2018
Comments