A009205 a(n) = gcd(d(n), sigma(n)).
1, 1, 2, 1, 2, 4, 2, 1, 1, 2, 2, 2, 2, 4, 4, 1, 2, 3, 2, 6, 4, 4, 2, 4, 1, 2, 4, 2, 2, 8, 2, 3, 4, 2, 4, 1, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 2, 3, 3, 4, 2, 2, 8, 4, 8, 4, 2, 2, 12, 2, 4, 2, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 2, 2, 2, 4, 8, 2, 2, 1, 2, 2, 4, 4, 4, 4, 4, 2, 6, 4, 6, 4, 4, 4, 12, 2, 3, 6, 1, 2, 8, 2, 2, 8, 2, 2, 4, 2, 8, 4, 2, 2, 8, 4, 6, 2, 4, 4, 8
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[GCD[DivisorSigma[0,n],DivisorSigma[1,n]],{n,120}] (* Harvey P. Dale, Dec 05 2017 *)
-
PARI
A009205(n) = gcd(numdiv(n),sigma(n)); \\ Antti Karttunen, May 22 2017
-
Python
from math import prod, gcd from sympy import factorint def A009205(n): f = factorint(n).items() return gcd(prod(e+1 for p, e in f),prod((p**(e+1)-1)//(p-1) for p,e in f)) # Chai Wah Wu, Jul 27 2023
Formula
Extensions
Data section extended to 120 terms by Antti Karttunen, May 22 2017