cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009205 a(n) = gcd(d(n), sigma(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 2, 1, 1, 2, 2, 2, 2, 4, 4, 1, 2, 3, 2, 6, 4, 4, 2, 4, 1, 2, 4, 2, 2, 8, 2, 3, 4, 2, 4, 1, 2, 4, 4, 2, 2, 8, 2, 6, 6, 4, 2, 2, 3, 3, 4, 2, 2, 8, 4, 8, 4, 2, 2, 12, 2, 4, 2, 1, 4, 8, 2, 6, 4, 8, 2, 3, 2, 2, 2, 2, 4, 8, 2, 2, 1, 2, 2, 4, 4, 4, 4, 4, 2, 6, 4, 6, 4, 4, 4, 12, 2, 3, 6, 1, 2, 8, 2, 2, 8, 2, 2, 4, 2, 8, 4, 2, 2, 8, 4, 6, 2, 4, 4, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[0,n],DivisorSigma[1,n]],{n,120}] (* Harvey P. Dale, Dec 05 2017 *)
  • PARI
    A009205(n) = gcd(numdiv(n),sigma(n)); \\ Antti Karttunen, May 22 2017
    
  • Python
    from math import prod, gcd
    from sympy import factorint
    def A009205(n):
        f = factorint(n).items()
        return gcd(prod(e+1 for p, e in f),prod((p**(e+1)-1)//(p-1) for p,e in f)) # Chai Wah Wu, Jul 27 2023

Formula

a(n) = A064840(n)/A009278(n). - Amiram Eldar, Jan 31 2025

Extensions

Data section extended to 120 terms by Antti Karttunen, May 22 2017