A009210 Expansion of e.g.f.: exp(sin(x)*cos(x)).
1, 1, 1, -3, -15, -23, 177, 1253, 1057, -37103, -245471, 371085, 15691665, 76436089, -608056239, -10302629131, -20287425215, 856245051169, 8821231566145, -29959421725155, -1376333505095631, -7591883371988471, 139148719952772849
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..125
Programs
-
Mathematica
With[{nn=30},CoefficientList[Series[Exp[Sin[x]*Cos[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 10 2021 *)
-
Maxima
a(n):=sum((2^(4*j-n+1)*sum((2*i+2*j-n)^n*binomial(n-2*j,i)*(-1)^(n-j-i),i,0,((n-2*j)/2)))/(n-2*j)!,j,0,((n-1)/2)); /* Vladimir Kruchinin, May 29 2011 */
-
PARI
x='x+O('x^66); Vec(serlaplace(exp(sin(x)*cos(x)))) /* Joerg Arndt, May 29 2011 */
Formula
a(n) = Sum_{j=0..(n-1)/2} 2^(4*j-n+1)*(Sum_{i=0..(n-2*j)/2} (2*i+2*j-n)^n*binomial(n-2*j,i)*(-1)^(n-j-i))/(n-2*j)!, n>0, a(0)=1. - Vladimir Kruchinin, May 29 2011
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * (-4)^k * a(n-2*k-1). - Ilya Gutkovskiy, Feb 24 2022
Extensions
Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, May 29 2011
Definition clarified and prior Mathematica program replaced by Harvey P. Dale, Aug 10 2021