cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009210 Expansion of e.g.f.: exp(sin(x)*cos(x)).

Original entry on oeis.org

1, 1, 1, -3, -15, -23, 177, 1253, 1057, -37103, -245471, 371085, 15691665, 76436089, -608056239, -10302629131, -20287425215, 856245051169, 8821231566145, -29959421725155, -1376333505095631, -7591883371988471, 139148719952772849
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Sin[x]*Cos[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 10 2021 *)
  • Maxima
    a(n):=sum((2^(4*j-n+1)*sum((2*i+2*j-n)^n*binomial(n-2*j,i)*(-1)^(n-j-i),i,0,((n-2*j)/2)))/(n-2*j)!,j,0,((n-1)/2)); /* Vladimir Kruchinin, May 29 2011 */
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(sin(x)*cos(x)))) /* Joerg Arndt, May 29 2011 */

Formula

a(n) = Sum_{j=0..(n-1)/2} 2^(4*j-n+1)*(Sum_{i=0..(n-2*j)/2} (2*i+2*j-n)^n*binomial(n-2*j,i)*(-1)^(n-j-i))/(n-2*j)!, n>0, a(0)=1. - Vladimir Kruchinin, May 29 2011
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2*k) * (-4)^k * a(n-2*k-1). - Ilya Gutkovskiy, Feb 24 2022

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, May 29 2011
Definition clarified and prior Mathematica program replaced by Harvey P. Dale, Aug 10 2021