A009213 a(n) = gcd(d(n), phi(n)), where d is the number of divisors of n (A000005) and phi is Euler's totient function (A000010).
1, 1, 2, 1, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 4, 1, 2, 6, 2, 2, 4, 2, 2, 8, 1, 4, 2, 6, 2, 8, 2, 2, 4, 4, 4, 3, 2, 2, 4, 8, 2, 4, 2, 2, 6, 2, 2, 2, 3, 2, 4, 6, 2, 2, 4, 8, 4, 4, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 8, 2, 12, 2, 4, 2, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 2, 4, 8, 2, 12, 4, 2, 4, 2, 4, 4, 2, 6, 6, 1, 2, 8, 2, 8, 8
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
Table[GCD[DivisorSigma[0,n],EulerPhi[n]],{n,110}] (* Harvey P. Dale, May 12 2025 *)
-
PARI
A009213(n) = gcd(numdiv(n), eulerphi(n)); \\ Antti Karttunen, Sep 07 2018