A009223 a(n) = gcd(sigma(n), phi(n)).
1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 4, 2, 6, 8, 1, 2, 3, 2, 2, 4, 2, 2, 4, 1, 6, 2, 4, 2, 8, 2, 1, 4, 2, 24, 1, 2, 6, 8, 2, 2, 12, 2, 4, 6, 2, 2, 4, 3, 1, 8, 2, 2, 6, 8, 24, 4, 2, 2, 8, 2, 6, 4, 1, 12, 4, 2, 2, 4, 24, 2, 3, 2, 6, 4, 4, 12, 24, 2, 2, 1, 2, 2, 8, 4, 6, 8, 20, 2, 6, 8, 4, 4, 2, 24, 4, 2, 3, 12, 1, 2, 8
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Robert E. Dressler, On a theorem of Niven, Canadian Mathematical Bulletin, Vol. 17, No. 1 (1974), pp. 109-110.
Programs
-
Haskell
a009223 n = gcd (a000203 n) (a000010 n) -- Reinhard Zumkeller, Jan 19 2014
-
Mathematica
Table[GCD[DivisorSigma[1,n],EulerPhi[n]],{n,110}] (* Harvey P. Dale, Aug 10 2011 *)
-
PARI
a(n)=gcd(sigma(n=factor(n)), eulerphi(n)) \\ Charles R Greathouse IV, Nov 27 2013
Comments