cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A076485 Solutions to gcd(sigma(x), phi(x)) > gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) > A066086(x) or if A066087(x) > 0.

Original entry on oeis.org

12, 18, 24, 44, 48, 49, 54, 56, 72, 88, 92, 96, 99, 108, 112, 116, 125, 132, 135, 140, 147, 152, 162, 168, 169, 172, 176, 184, 188, 192, 196, 198, 200, 207, 216, 224, 236, 248, 250, 264, 270, 276, 280, 284, 288, 297, 308, 328, 332, 336, 344, 348, 352, 361
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Examples

			For n=12: sigma(12)=28, phi(12)=4, gcd(28,4)=4 core(12)=6, sigma(6)=12, phi(6)=2, gcd(12,2)=2.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Greater[s1, s2], Print[n]], {n, 1, 256}]

A222713 Least number k such that n divides gcd(sigma(k), phi(k)) (A009223).

Original entry on oeis.org

1, 3, 14, 12, 88, 14, 116, 15, 190, 88, 989, 35, 477, 116, 209, 105, 6901, 190, 7067, 88, 196, 989, 6439, 35, 15049, 477, 2754, 172, 10207, 209, 4976, 336, 989, 6901, 1189, 190, 10877, 7067, 477, 248, 13529, 377, 44461, 989, 418, 6439, 79523, 105, 10244, 15049
Offset: 1

Views

Author

Phil Carmody, Mar 01 2013

Keywords

Comments

For each n there are infinitely many numbers k for which n divides sigma(k) and phi(k). - Marius A. Burtea, Mar 28 2019

Examples

			Given A009223 = 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 4, 2, 6, 8, 1, 2, 3, ...
1 first divides A009223(1); 2 first divides A009223(3); 3 first divides A009223(14)=6.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in [1..300000] | IsIntegral(SumOfDivisors(n)/m) and IsIntegral(EulerPhi(n)/m) ]): m in [1..70]]; // Marius A. Burtea, Mar 28 2019
    
  • Magma
    v:=[];
    for n in [1..60] do
    m:=1;
            while  not EulerPhi(m) mod n  eq 0 or not SumOfDivisors(m) mod n  eq 0 do
               v[n]:=0;
               m:=m+1;
            end while;
         v[n]:=m;
    end for;
    v; // Marius A. Burtea, Mar 30 2019
  • Mathematica
    Array[Block[{i = 1}, While[Mod[GCD[DivisorSigma[1, i], EulerPhi@ i], #] != 0, i++]; i] &, 50] (* Michael De Vlieger, Mar 28 2019 *)
  • PARI
    a(n)={my(k=1); while(gcd(sigma(k), eulerphi(k))%n!=0, k++); k}
    

A076486 Solutions to gcd(sigma(x), phi(x)) < gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) < A066086(x) or if A066087(x) < 0.

Original entry on oeis.org

9, 25, 28, 36, 45, 50, 52, 75, 76, 81, 84, 90, 98, 100, 117, 121, 124, 144, 148, 150, 153, 156, 175, 180, 208, 225, 228, 234, 242, 244, 245, 252, 261, 268, 275, 289, 292, 300, 304, 306, 316, 324, 325, 333, 338, 360, 364, 369, 372, 380, 388, 392, 400, 405, 412
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Examples

			For n=9: sigma(9)=13, phi(9)=6, gcd(13,6)=1, core(9)=3, sigma(3)=4, phi(3)=2, gcd(4,2)=2.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Greater[s2, s1], Print[n]], {n, 1, 256}]

A076487 Solutions to gcd(sigma(x), phi(x)) = gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) = A066086(x) or if A066087(x) = 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Comments

The squarefree numbers are a subset of this sequence.

Examples

			For n=20: sigma(20)=42, phi(20)=8, gcd(42,8)=2, core(20)=10, sigma(10)=18, phi(10)=4, gcd(18,4)=2, so A009223(20) = A066086(20)=2.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Equal[s2, s1], Print[n]], {n, 1, 256}]
  • PARI
    isok(n) = my(c=core(n)); gcd(sigma(n), eulerphi(n)) == gcd(sigma(c), eulerphi(c)); \\ Michel Marcus, Jul 30 2017

A222711 Numbers k such that gcd(sigma(k), phi(k)) (A009223) attains record values.

Original entry on oeis.org

1, 3, 12, 14, 15, 35, 105, 190, 248, 357, 616, 812, 1045, 3080, 3135, 3339, 4064, 5049, 8323, 8636, 10659, 12441, 16065, 19780, 20026, 23374, 24871, 29029, 50065, 58435, 64285, 87685, 124355, 132957, 137885, 140335, 248501, 263055, 317205, 353133, 423657, 596037, 655707, 734517, 894387
Offset: 1

Views

Author

Phil Carmody, Mar 01 2013

Keywords

Comments

RECORDS transform of A009223.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; record = 1; a[n_] := a[n] = For[k = a[n-1] + 1, True, k++, g = GCD[DivisorSigma[1, k], EulerPhi[k]]; If[g > record, record = g; Return[k]]]; Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Oct 07 2013 *)
    DeleteDuplicates[Table[{k,GCD[DivisorSigma[1,k],EulerPhi[k]]},{k,900000}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Jun 22 2024 *)
  • PARI
    mg=0;for(x=1,1000000,g=A009223(x);if(g>mg,print1(x", ");mg=g))

A222712 Record values of gcd(sigma(n), phi(n)) (A009223).

Original entry on oeis.org

1, 2, 4, 6, 8, 24, 48, 72, 120, 192, 240, 336, 720, 960, 1440, 1872, 2016, 2880, 3360, 4032, 5760, 6720, 6912, 7392, 8640, 10080, 17280, 20160, 34560, 40320, 44352, 60480, 69120, 74880, 95040, 96768, 100800, 120960, 134784, 201600, 241920, 322560, 354816, 411840, 483840
Offset: 1

Views

Author

Phil Carmody, Mar 01 2013

Keywords

Comments

RECORDS transform of A009223.

Crossrefs

Cf. A009223, A222711 (indexes where these records are attained).

Programs

  • PARI
    mg=0;for(x=1,1000000,g=A009223(x);if(g>mg,print1(g", ");mg=g))

A222714 Smallest i such that prime(n) divides gcd(sigma(i), phi(i)) (cf. A009223).

Original entry on oeis.org

3, 14, 88, 116, 989, 477, 6901, 7067, 6439, 10207, 4976, 10877, 13529, 44461, 79523, 22577, 250277, 62023, 107869, 161027, 75008, 49769, 55277, 183296, 75077, 612463, 381923, 412163, 712423, 153679, 32576, 137549, 450181, 154289, 1776377, 1642577, 491723, 637981, 3903791, 239777, 642251, 1572889, 1608983, 1192739, 2791489, 316409, 888731, 4773091, 4942243, 1256293
Offset: 1

Views

Author

Phil Carmody, Mar 01 2013

Keywords

Examples

			Given A009223 = 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 4, 2, 6, 8, 1, 2, 3, ...
prime(1)=2 first divides A009223(3); prime(2)=3 first divides A009223(14)=6; prime(3)=5 first divides both sigma(88)=180 and phi(88)=40, so A222714(3)=88.
		

Crossrefs

Cf. A009223. Subsequence of A222713.

Programs

  • PARI
    A009223_hunt(x)=local(n=0,g);while(n++,g=A009223(n);if(g%x,,return(n)));
    for(x=1,50,print1(A009223_hunt(prime(x))", "))

A372569 Lexicographically earliest infinite sequence such that a(i) = a(j) => A009194(i) = A009194(j), A009195(i) = A009195(j) and A009223(i) = A009223(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 7, 2, 15, 16, 9, 17, 18, 2, 19, 2, 20, 21, 7, 22, 23, 2, 9, 24, 25, 2, 26, 2, 8, 27, 7, 2, 28, 29, 30, 10, 13, 2, 31, 32, 33, 14, 7, 2, 34, 2, 9, 35, 36, 37, 38, 2, 13, 21, 39, 2, 40, 2, 9, 41, 8, 37, 42, 2, 43, 44, 7, 2, 45, 46, 9, 10, 47, 2, 48, 49, 8, 14, 7, 50, 51, 2, 52, 53, 54, 2, 19, 2
Offset: 1

Views

Author

Antti Karttunen, May 25 2024

Keywords

Comments

Restricted growth sequence transform of the triple [A009194(n), A009195(n), A009223(n)].
For all i, j: A372570(i) = A372570(j) => a(i) = a(j) => A074389(i) = A074389(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux372569(n) = [gcd(n, sigma(n)), gcd(n, eulerphi(n)), gcd(eulerphi(n), sigma(n))];
    v372569 = rgs_transform(vector(up_to, n, Aux372569(n)));
    A372569(n) = v372569[n];

A372570 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A009194(n), A009195(n), A009223(n), A322361(n), A342671(n)], for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 8, 3, 16, 17, 10, 18, 19, 3, 20, 3, 21, 22, 8, 23, 24, 3, 10, 25, 26, 3, 27, 3, 28, 29, 8, 3, 30, 31, 32, 33, 34, 3, 35, 36, 37, 38, 8, 3, 39, 3, 10, 40, 41, 42, 43, 3, 44, 22, 45, 3, 46, 3, 10, 47, 48, 49, 50, 3, 51, 52, 8, 3, 53, 54, 10, 55, 56, 3, 57, 58, 28, 15, 8, 59, 60, 3, 61, 62, 63, 3
Offset: 1

Views

Author

Antti Karttunen, May 25 2024

Keywords

Comments

Restricted growth sequence transform of the quintuple [A009194(n), A009195(n), A009223(n), A322361(n), A342671(n)].
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A372569(i) = A372569(j),
a(i) = a(j) => A372572(i) = A372572(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    Aux372570(n) = [gcd(n, sigma(n)), gcd(n, eulerphi(n)), gcd(eulerphi(n), sigma(n)), gcd(n, A003961(n)), gcd(sigma(n), A003961(n))];
    v372570 = rgs_transform(vector(up_to, n, Aux372570(n)));
    A372570(n) = v372570[n];

A076488 Nonsquarefree solutions to gcd(sigma(x), phi(x)) = gcd(sigma(core(x)), Phi(core(x))), i.e., when A009223(x) = A066086(x) or if A066087(x)=0 and mu(x)=0.

Original entry on oeis.org

4, 8, 16, 20, 27, 32, 40, 60, 63, 64, 68, 80, 104, 120, 126, 128, 136, 160, 164, 171, 189, 204, 212, 220, 232, 240, 243, 256, 260, 272, 279, 294, 296, 312, 315, 320, 340, 342, 343, 350, 351, 356, 363, 375, 378, 387, 404, 408, 416, 424, 464, 476, 480, 492, 512
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Examples

			n=60: sigma(60)=168, phi(60)=16, gcd(168,16)=8, core(60)=30, sigma(30)=72, phi(30)=8, gcd(72,8)=8, so A009223(60)=A066086(60)=8.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Equal[s2, s1]&&Equal[MoebiusMu[n], 0], Print[n]], {n, 1, 1024}]
Showing 1-10 of 26 results. Next