cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009634 E.g.f. tan(x*cosh(x)), zeros omitted.

Original entry on oeis.org

1, 5, 81, 3429, 238273, 25669093, 3923627345, 807194393477, 215176572950017, 72120516857475141, 29686285367774651089, 14721686852776234894885, 8656857857596485141973441, 5955926696414663185424979749
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Tan[Cosh[x]*x],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Sep 06 2017 *)
  • Maxima
    a(n):=b(2*n+1);
    b(n):=sum(binomial(n,k)*(((-1)^(k-1)+1)*(sum((k-2*i)^(n-k)*binomial(k,i),i,0,k))*sum(j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k,j),j,1,k))/(2^k),k,1,n); /* Vladimir Kruchinin, Apr 21 2011 */
    
  • PARI
    a(n)={n=2*n+1;sum(k=1,n, binomial(n,k)*(((-1)^(k-1)+1)*(sum(i=0,k, (k-2*i)^(n-k)*binomial(k,i)))*sum(j=1,k, j!*2^(k-j-1)*(-1)^((k+1)/2+j)* stirling(k,j,2)))/(2^k));} /* Kruchinin's formula; Joerg Arndt, Apr 22 2011 */

Formula

a(n) = b(2*n+1) where b(n) = Sum_{k=1..n} (binomial(n,k)*(((-1)^(k-1)+1)*(Sum_{i=0..k} (k-2*i)^(n-k)*binomial(k,i))*Sum_{j=1..k} j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k,j))/(2^k)). - Vladimir Kruchinin, Apr 21 2011

Extensions

Extended and signs tested by Olivier Gérard, Mar 15 1997
Name corrected by Joerg Arndt, Apr 23 2011
Previous Mathematica program replaced by Harvey P. Dale, Sep 06 2017