cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009694 a(n) = Product_{i=0..7} floor((n+i)/8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 8748, 11664, 15552, 20736, 27648, 36864, 49152, 65536, 81920, 102400, 128000, 160000, 200000, 250000, 312500
Offset: 0

Views

Author

Keywords

Comments

For n >= 8, a(n) is the maximal product of eight positive integers with sum n. - Wesley Ivan Hurt, Jul 08 2022
A quasipolynomial of order 8 and degree 8. - Charles R Greathouse IV, Nov 06 2022

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), this sequence (k=8), A009714 (k=9), A354600 (k=10).

Programs

  • Mathematica
    Table[Product[Floor[(n+i)/8],{i,0,7}],{n,0,40}] (* Harvey P. Dale, Nov 13 2013 *)
  • PARI
    a(n) = prod(i=0, 7, (n+i)\8); \\ Michel Marcus, Jul 14 2022

Formula

a(8*n) = n^8 (A001016). - Bernard Schott, Nov 06 2022
a(n) = n^8/8^8 + O(n^6). - Charles R Greathouse IV, Nov 06 2022
Sum_{n>=8} 1/a(n) = 1 + zeta(8). - Amiram Eldar, Jan 10 2023