A009947 Sequence of nonnegative integers, but insert n/2 after every even number n.
0, 0, 1, 2, 1, 3, 4, 2, 5, 6, 3, 7, 8, 4, 9, 10, 5, 11, 12, 6, 13, 14, 7, 15, 16, 8, 17, 18, 9, 19, 20, 10, 21, 22, 11, 23, 24, 12, 25, 26, 13, 27, 28, 14, 29, 30, 15, 31, 32, 16, 33, 34, 17, 35, 36, 18, 37, 38, 19, 39, 40, 20, 41, 42, 21, 43, 44, 22, 45, 46
Offset: 0
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 151.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Programs
-
Haskell
a009947 n = a009947_list !! n a009947_list = concatMap (\x -> [2 * x, x, 2 * x + 1]) [0..] -- Reinhard Zumkeller, Jul 06 2012
-
Maple
A009947 := proc(a,n) local i,b,c; b := a; c := [ floor(b) ]; for i from 1 to n-1 do b := b-c[ i ]/i!; c := [ op(c), floor(b*(i+1)!) ]; od; c; end:
-
Mathematica
Flatten[Table[If[EvenQ[n],{n,n/2},n],{n,0,40}]] (* Harvey P. Dale, Feb 17 2016 *)
-
PARI
a(n)=if(n%3==1, n\3, n\3*2+!!(n%3)) \\ Charles R Greathouse IV, Sep 02 2015
-
PARI
concat(vector(2), Vec(x^2*(x^3+x^2+2*x+1) / ((x-1)^2*(x^2+x+1)^2) + O(x^100))) \\ Colin Barker, Mar 29 2017
Formula
G.f.: x^2*(x^3+x^2+2*x+1) / ((x-1)^2*(x^2+x+1)^2). - Colin Barker, Aug 31 2013
a(n) = (n^2-n+floor(n/3)*(18*floor(n/3)^2-3*(4*n-7)*floor(n/3)+2*n^2-10*n+7))/2. - Luce ETIENNE, Mar 29 2017
Sum_{n>=2} (-1)^n/a(n) = Pi/4 + log(2)/2. - Amiram Eldar, Jan 11 2023
Comments