cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010002 a(0) = 1, a(n) = 9*n^2 + 2 for n>0.

Original entry on oeis.org

1, 11, 38, 83, 146, 227, 326, 443, 578, 731, 902, 1091, 1298, 1523, 1766, 2027, 2306, 2603, 2918, 3251, 3602, 3971, 4358, 4763, 5186, 5627, 6086, 6563, 7058, 7571, 8102, 8651, 9218, 9803, 10406, 11027, 11666, 12323, 12998, 13691, 14402, 15131, 15878, 16643
Offset: 0

Views

Author

Keywords

Comments

Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=1, s=2. After 1, all terms are in A000408. [Bruno Berselli, Feb 06 2012]
The identity (18*n^2+2)^2-(9*n^2+2)*(6*n)^2 = 4 can be written as A010008(n+1)^2-a(n+1)*A008588(n+1)^2 = 4. - Vincenzo Librandi, Feb 07 2012

Crossrefs

Cf. A206399.

Programs

Formula

G.f.: (1+x)*(1+7*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*9+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+sqrt(2)/12 *Pi*coth(Pi/3*sqrt 2) = 1.1606262038.. - R. J. Mathar, May 07 2024

Extensions

More terms from Bruno Berselli, Feb 06 2012