cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010015 a(0) = 1, a(n) = 25*n^2 + 2 for n > 0.

Original entry on oeis.org

1, 27, 102, 227, 402, 627, 902, 1227, 1602, 2027, 2502, 3027, 3602, 4227, 4902, 5627, 6402, 7227, 8102, 9027, 10002, 11027, 12102, 13227, 14402, 15627, 16902, 18227, 19602, 21027, 22502, 24027, 25602, 27227, 28902, 30627, 32402, 34227, 36102, 38027, 40002
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A160842. - Bruno Berselli, Feb 06 2012
The identity (25*n^2 + 1)^2 - (25*n^2 + 2)*(5*n)^2 = 1 can be written as (A016850(n+1) + 1)^2 - a(n+1)*A008587(n+1)^2 = 1. - Vincenzo Librandi, Feb 08 2012

Crossrefs

Cf. A206399.

Programs

Formula

G.f.: (1+x)*(1 + 23*x + x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*25 + 2)*e^x - 1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) =3/4+sqrt(2)/20*Pi*coth(Pi*sqrt(2)/5) = 1.062575323280590.. - R. J. Mathar, May 07 2024
a(n) = A262221(n)+A262221(n+1). - R. J. Mathar, May 07 2024