A010015 a(0) = 1, a(n) = 25*n^2 + 2 for n > 0.
1, 27, 102, 227, 402, 627, 902, 1227, 1602, 2027, 2502, 3027, 3602, 4227, 4902, 5627, 6402, 7227, 8102, 9027, 10002, 11027, 12102, 13227, 14402, 15627, 16902, 18227, 19602, 21027, 22502, 24027, 25602, 27227, 28902, 30627, 32402, 34227, 36102, 38027, 40002
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A206399.
Programs
-
Mathematica
Join[{1}, 25 Range[40]^2 + 2] (* Bruno Berselli, Feb 06 2012 *) Join[{1}, LinearRecurrence[{3, -3, 1}, {27, 102, 227}, 50]] (* Vincenzo Librandi, Feb 08 2012 *)
-
PARI
A010015(n)=25*n^2+2-!n \\ M. F. Hasler, Feb 14 2012
Formula
G.f.: (1+x)*(1 + 23*x + x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*25 + 2)*e^x - 1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) =3/4+sqrt(2)/20*Pi*coth(Pi*sqrt(2)/5) = 1.062575323280590.. - R. J. Mathar, May 07 2024
Comments