A010027 Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).
1, 1, 1, 1, 2, 3, 1, 3, 9, 11, 1, 4, 18, 44, 53, 1, 5, 30, 110, 265, 309, 1, 6, 45, 220, 795, 1854, 2119, 1, 7, 63, 385, 1855, 6489, 14833, 16687, 1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329, 1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457, 1
Offset: 1
Examples
Triangle starts: 1; 1, 1; 1, 2, 3; 1, 3, 9, 11; 1, 4, 18, 44, 53; 1, 5, 30, 110, 265, 309; 1, 6, 45, 220, 795, 1854, 2119; 1, 7, 63, 385, 1855, 6489, 14833, 16687; 1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329; 1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457; ... For n=3, the permutations 123, 132, 213, 231, 312, 321 have respectively 2,0,0,1,1,0 consecutive ascending pairs, so row 3 of the triangle is 3,2,1. - _N. J. A. Sloane_, Apr 12 2014 In the alternative definition, T(4,2)=3 because we have 234.1, 4.123, and 34.12 (the blocks are separated by dots). - _Emeric Deutsch_, May 16 2010
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
Links
- Alois P. Heinz, Rows n = 1..150, flattened
- A. N. Myers, Counting permutations by their rigid patterns, J. Combin. Theory, A 99 (2002), 345-357. [_Emeric Deutsch_, May 15 2010]
Crossrefs
Diagonals, reading from the right-hand edge: A000255, A000166, A000274, A000313, A001260, A001261. A045943 is another diagonal.
Cf. A123513 (mirror image).
A289632 is the analogous triangle with the additional restriction that all consecutive pairs must be isolated, i.e., must not be back-to-back to form longer consecutive sequences.
Programs
-
Maple
U := proc (n, k) options operator, arrow: factorial(k+1)*binomial(n, k)*(sum((-1)^i/factorial(i), i = 0 .. k+1))/n end proc: for n to 10 do seq(U(n, k), k = 1 .. n) end do; # yields sequence in triangular form; # Emeric Deutsch, May 15 2010
-
Mathematica
t[n_, k_] := Binomial[n, k]*Subfactorial[k+1]/n; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Emeric Deutsch *) T[0,0]:=0; T[1,1]:=1; T[n_,n_]:=T[n,n]=(n-1)T[n-1,n-1]+(n-2)T[n-2,n-2]; T[n_,k_]:=T[n,k]=T[n-1,k] (n-1)/(n-k); Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)
Formula
E.g.f.: exp(x*(y-1))/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
From Emeric Deutsch, May 15 2010: (Start)
U(n,k) = binomial(n-1,k-1)*(k-1)!*Sum_{j=0..k-1} (-1)^(k-j-1)*(j+1)/(k-j-1)! (1 <= k <= n).
U(n,k) = (k+1)!*binomial(n,k)*(1/n)*Sum_{i=0..k+1} (-1)^i/i!.
U(n,k) = (1/n)*binomial(n,k)*d(k+1), where d(j)=A000166(j) (derangement numbers). (End)
Extensions
More terms from Vladeta Jovovic, Jan 03 2003
Original definition from David, Kendall and Barton restored by N. J. A. Sloane, Apr 12 2014
Comments