cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A000166 Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points.

Original entry on oeis.org

1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, 32071101049, 481066515734, 7697064251745, 130850092279664, 2355301661033953, 44750731559645106, 895014631192902121, 18795307255050944540, 413496759611120779881, 9510425471055777937262
Offset: 0

Views

Author

Keywords

Comments

Euler (1809) not only gives the first ten or so terms of the sequence, he also proves both recurrences a(n) = (n-1)*(a(n-1) + a(n-2)) and a(n) = n*a(n-1) + (-1)^n.
a(n) is the permanent of the matrix with 0 on the diagonal and 1 elsewhere. - Yuval Dekel, Nov 01 2003
a(n) is the number of desarrangements of length n. A desarrangement of length n is a permutation p of {1,2,...,n} for which the smallest of all the ascents of p (taken to be n if there are no ascents) is even. Example: a(3) = 2 because we have 213 and 312 (smallest ascents at i = 2). See the J. Désarménien link and the Bona reference (p. 118). - Emeric Deutsch, Dec 28 2007
a(n) is the number of deco polyominoes of height n and having in the last column an even number of cells. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. - Emeric Deutsch, Dec 28 2007
Attributed to Nicholas Bernoulli in connection with a probability problem that he presented. See Problem #15, p. 494, in "History of Mathematics" by David M. Burton, 6th edition. - Mohammad K. Azarian, Feb 25 2008
a(n) is the number of permutations p of {1,2,...,n} with p(1)!=1 and having no right-to-left minima in consecutive positions. Example a(3) = 2 because we have 231 and 321. - Emeric Deutsch, Mar 12 2008
a(n) is the number of permutations p of {1,2,...,n} with p(n)! = n and having no left to right maxima in consecutive positions. Example a(3) = 2 because we have 312 and 321. - Emeric Deutsch, Mar 12 2008
Number of wedged (n-1)-spheres in the homotopy type of the Boolean complex of the complete graph K_n. - Bridget Tenner, Jun 04 2008
The only prime number in the sequence is 2. - Howard Berman (howard_berman(AT)hotmail.com), Nov 08 2008
From Emeric Deutsch, Apr 02 2009: (Start)
a(n) is the number of permutations of {1,2,...,n} having exactly one small ascent. A small ascent in a permutation (p_1,p_2,...,p_n) is a position i such that p_{i+1} - p_i = 1. (Example: a(3) = 2 because we have 312 and 231; see the Charalambides reference, pp. 176-180.) [See also David, Kendall and Barton, p. 263. - N. J. A. Sloane, Apr 11 2014]
a(n) is the number of permutations of {1,2,...,n} having exactly one small descent. A small descent in a permutation (p_1,p_2,...,p_n) is a position i such that p_i - p_{i+1} = 1. (Example: a(3)=2 because we have 132 and 213.) (End)
For n > 2, a(n) + a(n-1) = A000255(n-1); where A000255 = (1, 1, 3, 11, 53, ...). - Gary W. Adamson, Apr 16 2009
Connection to A002469 (game of mousetrap with n cards): A002469(n) = (n-2)*A000255(n-1) + A000166(n). (Cf. triangle A159610.) - Gary W. Adamson, Apr 17 2009
From Emeric Deutsch, Jul 18 2009: (Start)
a(n) is the sum of the values of the largest fixed points of all non-derangements of length n-1. Example: a(4)=9 because the non-derangements of length 3 are 123, 132, 213, and 321, having largest fixed points 3, 1, 3, and 2, respectively.
a(n) is the number of non-derangements of length n+1 for which the difference between the largest and smallest fixed point is 2. Example: a(3) = 2 because we have 1'43'2 and 32'14'; a(4) = 9 because we have 1'23'54, 1'43'52, 1'53'24, 52'34'1, 52'14'3, 32'54'1, 213'45', 243'15', and 413'25' (the extreme fixed points are marked).
(End)
a(n), n >= 1, is also the number of unordered necklaces with n beads, labeled differently from 1 to n, where each necklace has >= 2 beads. This produces the M2 multinomial formula involving partitions without part 1 given below. Because M2(p) counts the permutations with cycle structure given by partition p, this formula gives the number of permutations without fixed points (no 1-cycles), i.e., the derangements, hence the subfactorials with their recurrence relation and inputs. Each necklace with no beads is assumed to contribute a factor 1 in the counting, hence a(0)=1. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 01 2010
From Emeric Deutsch, Sep 06 2010: (Start)
a(n) is the number of permutations of {1,2,...,n, n+1} starting with 1 and having no successions. A succession in a permutation (p_1,p_2,...,p_n) is a position i such that p_{i+1} - p_i = 1. Example: a(3)=2 because we have 1324 and 1432.
a(n) is the number of permutations of {1,2,...,n} that do not start with 1 and have no successions. A succession in a permutation (p_1,p_2,...,p_n) is a position i such that p_{i+1} - p_i = 1. Example: a(3)=2 because we have 213 and 321.
(End)
Increasing colored 1-2 trees with choice of two colors for the rightmost branch of nonleave except on the leftmost path, there is no vertex of outdegree one on the leftmost path. - Wenjin Woan, May 23 2011
a(n) is the number of zeros in n-th row of the triangle in A170942, n > 0. - Reinhard Zumkeller, Mar 29 2012
a(n) is the maximal number of totally mixed Nash equilibria in games of n players, each with 2 pure options. - Raimundas Vidunas, Jan 22 2014
Convolution of sequence A135799 with the sequence generated by 1+x^2/(2*x+1). - Thomas Baruchel, Jan 08 2016
The number of interior lattice points of the subpolytope of the n-dimensional permutohedron whose vertices correspond to permutations avoiding 132 and 312. - Robert Davis, Oct 05 2016
Consider n circles of different radii, where each circle is either put inside some bigger circle or contains a smaller circle inside it (no common points are allowed). Then a(n) gives the number of such combinations. - Anton Zakharov, Oct 12 2016
If we partition the permutations of [n+1] in A000240 according to their starting digit, we will get (n+1) equinumerous classes each of size a(n), i.e., A000240(n+1) = (n+1)*a(n), hence a(n) is the size of each class of permutations of [n+1] in A000240. For example, for n = 4 we have 45 = 5*9. - Enrique Navarrete, Jan 10 2017
Call d_n1 the permutations of [n] that have the substring n1 but no substring in {12,23,...,(n-1)n}. If we partition them according to their starting digit, we will get (n-1) equinumerous classes each of size A000166(n-2) (the class starting with the digit 1 is empty since we must have the substring n1). Hence d_n1 = (n-1)*A000166(n-2) and A000166(n-2) is the size of each nonempty class in d_n1. For example, d_71 = 6*44 = 264, so there are 264 permutations in d_71 distributed in 6 nonempty classes of size A000166(5) = 44. (To get permutations in d_n1 recursively from more basic ones see the link "Forbidden Patterns" below.) - Enrique Navarrete, Jan 15 2017
Also the number of maximum matchings and minimum edge covers in the n-crown graph. - Eric W. Weisstein, Jun 14 and Dec 24 2017
The sequence a(n) taken modulo a positive integer k is periodic with exact period dividing k when k is even and dividing 2*k when k is odd. This follows from the congruence a(n+k) = (-1)^k*a(n) (mod k) for all n and k, which in turn is easily proved by induction making use of the recurrence a(n) = n*a(n-1) + (-1)^n. - Peter Bala, Nov 21 2017
a(n) is the number of distinct possible solutions for a directed, no self loop containing graph (not necessarily connected) that has n vertices, and each vertex has an in- and out-degree of exactly 1. - Patrik Holopainen, Sep 18 2018
a(n) is the dimension of the kernel of the random-to-top and random-to-random shuffling operators over a collection of n objects (in a vector space of size n!), as noticed by M. Wachs and V. Reiner. See the Reiner, Saliola and Welker reference below. - Nadia Lafreniere, Jul 18 2019
a(n) is the number of distinct permutations for a Secret Santa gift exchange with n participants. - Patrik Holopainen, Dec 30 2019
a(2*n+1) is even. More generally, a(m*n+1) is divisible by m*n, which follows from a(n+1) = n*(a(n) + a(n-1)) = n*A000255(n-1) for n >= 1. a(2*n) is odd; in fact, a(2*n) == 1 (mod 8). Other divisibility properties include a(6*n) == 1 (mod 24), a(9*n+4) == a(9*n+7) == 0 (mod 9), a(10*n) == 1 (mod 40), a(11*n+5) == 0 (mod 11) and a(13*n+8 ) == 0 (mod 13). - Peter Bala, Apr 05 2022
Conjecture: a(n) with n > 2 is a perfect power only for n = 4 with a(4) = 3^2. This has been verified for n <= 1000. - Zhi-Wei Sun, Jan 09 2025

Examples

			a(2) = 1, a(3) = 2 and a(4) = 9 since the possibilities are {BA}, {BCA, CAB} and {BADC, BCDA, BDAC, CADB, CDAB, CDBA, DABC, DCAB, DCBA}. - _Henry Bottomley_, Jan 17 2001
The Boolean complex of the complete graph K_4 is homotopy equivalent to the wedge of 9 3-spheres.
Necklace problem for n = 6: partitions without part 1 and M2 numbers for n = 6: there are A002865(6) = 4 such partitions, namely (6), (2,4), (3^2) and (2^3) in A-St order with the M2 numbers 5!, 90, 40 and 15, respectively, adding up to 265 = a(6). This corresponds to 1 necklace with 6 beads, two necklaces with 2 and 4 beads respectively, two necklaces with 3 beads each and three necklaces with 2 beads each. - _Wolfdieter Lang_, Jun 01 2010
G.f. = 1 + x^2 + 9*x^3 + 44*x^4 + 265*x^5 + 1854*x^6 + 14833*x^7 + 133496*x^8 + ...
		

References

  • U. Abel, Some new identities for derangement numbers, Fib. Q., 56:4 (2018), 313-318.
  • M. Bona, Combinatorics of Permutations, Chapman & Hall/CRC, Boca Raton, Florida, 2004.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 32.
  • R. A. Brualdi and H. J. Ryser: Combinatorial Matrix Theory, 1992, Section 7.2, p. 202.
  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 182.
  • Florence Nightingale David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 168.
  • Florence Nightingale David, Maurice George Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263, Table 7.5.1, row 1.
  • P. R. de Montmort, On the Game of Thirteen (1713), reprinted in Annotated Readings in the History of Statistics, ed. H. A. David and A. W. F. Edwards, Springer-Verlag, 2001, pp. 25-29.
  • J. M. de Saint-Martin, "Le problème des rencontres" in Quadrature, No. 61, pp. 14-19, 2006, EDP-Sciences Les Ulis (France).
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 19.
  • Leonhard Euler, Solution quaestionis curiosae ex doctrina combinationum, Mémoires Académie sciences St. Pétersburg 3 (1809/1810), 57-64; also E738 in his Collected Works, series I, volume 7, pages 435-440.
  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • A. Hald, A History of Probability and Statistics and Their Applications Before 1750, Wiley, NY, 1990 (Chapter 19).
  • Irving Kaplansky, John Riordan, The problème des ménages. Scripta Math. 12 (1946), 113-124. See Eq(1).
  • Arnold Kaufmann, "Introduction à la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
  • Florian Kerschbaum and Orestis Terzidis, Filtering for Private Collaborative Benchmarking, in Emerging Trends in Information and Communication Security, Lecture Notes in Computer Science, Volume 3995/2006.
  • E. Lozansky and C. Rousseau, Winning Solutions, Springer, 1996; see p. 152.
  • P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 102.
  • M. S. Petković, "Non-attacking rooks", Famous Puzzles of Great Mathematicians, pp. 265-268, Amer. Math. Soc.(AMS), 2009.
  • V. Reiner, F. Saliola, and V. Welker. Spectra of Symmetrized Shuffling Operators, Memoirs of the American Mathematical Society, vol. 228, Amer. Math. Soc., Providence, RI, 2014, pp. 1-121. See section VI.9.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
  • H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 23.
  • T. Simpson, Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 122.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 82.
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 147, Eq. 5.2.9 (q=1).

Crossrefs

For the probabilities a(n)/n!, see A053557/A053556 and A103816/A053556.
A diagonal of A008291 and A068106. Column A008290(n,0).
A001120 has a similar recurrence.
For other derangement numbers see also A053871, A033030, A088991, A088992.
Pairwise sums of A002741 and A000757. Differences of A001277.
A diagonal in triangles A008305 and A010027.
a(n)/n! = A053557/A053556 = (N(n, n) of A103361)/(D(n, n) of A103360).
Column k=0 of A086764 and of A334715. Column k=1 of A364068.
Row sums of A216963 and of A323671.

Programs

  • Haskell
    a000166 n = a000166_list !! n
    a000166_list = 1 : 0 : zipWith (*) [1..]
                           (zipWith (+) a000166_list $ tail a000166_list)
    -- Reinhard Zumkeller, Dec 09 2012
    
  • Magma
    I:=[0,1]; [1] cat [n le 2 select I[n] else (n-1)*(Self(n-1)+Self(n-2)): n in [1..30]]; // Vincenzo Librandi, Jan 07 2016
  • Maple
    A000166 := proc(n) option remember; if n<=1 then 1-n else (n-1)*(procname(n-1)+procname(n-2)); fi; end;
    a:=n->n!*sum((-1)^k/k!, k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, May 17 2007
    ZL1:=[S,{S=Set(Cycle(Z,card>1))},labeled]: seq(count(ZL1,size=n),n=0..21); # Zerinvary Lajos, Sep 26 2007
    with (combstruct):a:=proc(m) [ZL,{ZL=Set(Cycle(Z,card>=m))},labeled]; end: A000166:=a(2):seq(count(A000166,size=n),n=0..21); # Zerinvary Lajos, Oct 02 2007
    Z := (x, m)->m!^2*sum(x^j/((m-j)!^2), j=0..m): R := (x, n, m)->Z(x, m)^n: f := (t, n, m)->sum(coeff(R(x, n, m), x, j)*(t-1)^j*(n*m-j)!, j=0..n*m): seq(f(0, n, 1), n=0..21); # Zerinvary Lajos, Jan 22 2008
    a:=proc(n) if `mod`(n,2)=1 then sum(2*k*factorial(n)/factorial(2*k+1), k=1.. floor((1/2)*n)) else 1+sum(2*k*factorial(n)/factorial(2*k+1), k=1..floor((1/2)*n)-1) end if end proc: seq(a(n),n=0..20); # Emeric Deutsch, Feb 23 2008
    G(x):=2*exp(-x)/(1-x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/2,n=0..21); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(KummerU(-n, -n, -1)), n = 0..23); # Peter Luschny, May 10 2022
  • Mathematica
    a[0] = 1; a[n_] := n*a[n - 1] + (-1)^n; a /@ Range[0, 21] (* Robert G. Wilson v *)
    a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 (* Michael Taktikos, May 26 2006 *)
    Range[0, 20]! CoefficientList[ Series[ Exp[ -x]/(1 - x), {x, 0, 20}], x]
    dr[{n_,a1_,a2_}]:={n+1,a2,n(a1+a2)}; Transpose[NestList[dr,{0,0,1},30]][[3]] (* Harvey P. Dale, Feb 23 2013 *)
    a[n_] := (-1)^n HypergeometricPFQ[{- n, 1}, {}, 1]; (* Michael Somos, Jun 01 2013 *)
    a[n_] := n! SeriesCoefficient[Exp[-x] /(1 - x), {x, 0, n}]; (* Michael Somos, Jun 01 2013 *)
    Table[Subfactorial[n], {n, 0, 21}] (* Jean-François Alcover, Jan 10 2014 *)
    RecurrenceTable[{a[n] == n*a[n - 1] + (-1)^n, a[0] == 1}, a, {n, 0, 23}] (* Ray Chandler, Jul 30 2015 *)
    Subfactorial[Range[0, 20]] (* Eric W. Weisstein, Dec 31 2017 *)
    nxt[{n_,a_}]:={n+1,a(n+1)+(-1)^(n+1)}; NestList[nxt,{0,1},25][[All,2]] (* Harvey P. Dale, Jun 01 2019 *)
  • Maxima
    s[0]:1$
    s[n]:=n*s[n-1]+(-1)^n$
    makelist(s[n],n,0,12); /* Emanuele Munarini, Mar 01 2011 */
    
  • PARI
    {a(n) = if( n<1, 1, n * a(n-1) + (-1)^n)}; /* Michael Somos, Mar 24 2003 */
    
  • PARI
    {a(n) = n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}; /* Michael Somos, Mar 24 2003 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*x^m/(1+(m+1)*x+x*O(x^n))^(m+1)),n)} /* Paul D. Hanna */
    
  • PARI
    A000166=n->n!*sum(k=0,n,(-1)^k/k!) \\ M. F. Hasler, Jan 26 2012
    
  • PARI
    a(n)=if(n,round(n!/exp(1)),1) \\ Charles R Greathouse IV, Jun 17 2012
    
  • PARI
    apply( {A000166(n)=n!\/exp(n>0)}, [0..22]) \\ M. F. Hasler, Nov 09 2024
    
  • Python
    See Hobson link.
    
  • Python
    A000166_list, m, x = [], 1, 1
    for n in range(10*2):
        x, m = x*n + m, -m
        A000166_list.append(x) # Chai Wah Wu, Nov 03 2014
    

Formula

a(n) = A008290(n,0).
a(n) + A003048(n+1) = 2*n!. - D. G. Rogers, Aug 26 2006
a(n) = {(n-1)!/exp(1)}, n > 1, where {x} is the nearest integer function. - Simon Plouffe, March 1993 [This uses offset 1, see below for the version with offset 0. - Charles R Greathouse IV, Jan 25 2012]
a(0) = 1, a(n) = round(n!/e) = floor(n!/e + 1/2) for n > 0.
a(n) = n!*Sum_{k=0..n} (-1)^k/k!.
D-finite with recurrence a(n) = (n-1)*(a(n-1) + a(n-2)), n > 0.
a(n) = n*a(n-1) + (-1)^n.
E.g.f.: exp(-x)/(1-x).
a(n) = Sum_{k=0..n} binomial(n, k)*(-1)^(n-k)*k! = Sum_{k=0..n} (-1)^(n-k)*n!/(n-k)!. - Paul Barry, Aug 26 2004
The e.g.f. y(x) satisfies y' = x*y/(1-x).
Inverse binomial transform of A000142. - Ross La Haye, Sep 21 2004
In Maple notation, representation as n-th moment of a positive function on [-1, infinity]: a(n)= int( x^n*exp(-x-1), x=-1..infinity ), n=0, 1... . a(n) is the Hamburger moment of the function exp(-1-x)*Heaviside(x+1). - Karol A. Penson, Jan 21 2005
a(n) = A001120(n) - n!. - Philippe Deléham, Sep 04 2005
a(n) = Integral_{x=0..oo} (x-1)^n*exp(-x) dx. - Gerald McGarvey, Oct 14 2006
a(n) = Sum_{k=2,4,...} T(n,k), where T(n,k) = A092582(n,k) = k*n!/(k+1)! for 1 <= k < n and T(n,n)=1. - Emeric Deutsch, Feb 23 2008
a(n) = n!/e + (-1)^n*(1/(n+2 - 1/(n+3 - 2/(n+4 - 3/(n+5 - ...))))). Asymptotic result (Ramanujan): (-1)^n*(a(n) - n!/e) ~ 1/n - 2/n^2 + 5/n^3 - 15/n^4 + ..., where the sequence [1,2,5,15,...] is the sequence of Bell numbers A000110. - Peter Bala, Jul 14 2008
From William Vaughn (wvaughn(AT)cvs.rochester.edu), Apr 13 2009: (Start)
a(n) = Integral_{p=0..1} (log(1/(1-p)) - 1)^n dp.
Proof: Using the substitutions 1=log(e) and y = e(1-p) the above integral can be converted to ((-1)^n/e) Integral_{y=0..e} (log(y))^n dy.
From CRC Integral tables we find the antiderivative of (log(y))^n is (-1)^n n! Sum_{k=0..n} (-1)^k y(log(y))^k / k!.
Using the fact that e(log(e))^r = e for any r >= 0 and 0(log(0))^r = 0 for any r >= 0 the integral becomes n! * Sum_{k=0..n} (-1)^k / k!, which is line 9 of the Formula section. (End)
a(n) = exp(-1)*Gamma(n+1,-1) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
G.f.: 1/(1-x^2/(1-2x-4x^2/(1-4x-9x^2/(1-6x-16x^2/(1-8x-25x^2/(1-... (continued fraction). - Paul Barry, Nov 27 2009
a(n) = Sum_{p in Pano1(n)} M2(p), n >= 1, with Pano1(n) the set of partitions without part 1, and the multinomial M2 numbers. See the characteristic array for partitions without part 1 given by A145573 in Abramowitz-Stegun (A-S) order, with A002865(n) the total number of such partitions. The M2 numbers are given for each partition in A-St order by the array A036039. - Wolfdieter Lang, Jun 01 2010
a(n) = row sum of A008306(n), n > 1. - Gary Detlefs, Jul 14 2010
a(n) = ((-1)^n)*(n-1)*hypergeom([-n+2, 2], [], 1), n>=1; 1 for n=0. - Wolfdieter Lang, Aug 16 2010
a(n) = (-1)^n * hypergeom([ -n, 1], [], 1), n>=1; 1 for n=0. From the binomial convolution due to the e.g.f. - Wolfdieter Lang, Aug 26 2010
Integral_{x=0..1} x^n*exp(x) = (-1)^n*(a(n)*e - n!).
O.g.f.: Sum_{n>=0} n^n*x^n/(1 + (n+1)*x)^(n+1). - Paul D. Hanna, Oct 06 2011
Abs((a(n) + a(n-1))*e - (A000142(n) + A000142(n-1))) < 2/n. - Seiichi Kirikami, Oct 17 2011
G.f.: hypergeom([1,1],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
From Sergei N. Gladkovskii, Nov 25 2011, Jul 05 2012, Sep 23 2012, Oct 13 2012, Mar 09 2013, Mar 10 2013, Oct 18 2013: (Start)
Continued fractions:
In general, e.g.f. (1+a*x)/exp(b*x) = U(0) with U(k) = 1 + a*x/(1-b/(b-a*(k+1)/U(k+1))). For a=-1, b=-1: exp(-x)/(1-x) = 1/U(0).
E.g.f.: (1-x/(U(0)+x))/(1-x), where U(k) = k+1 - x + (k+1)*x/U(k+1).
E.g.f.: 1/Q(0) where Q(k) = 1 - x/(1 - 1/(1 - (k+1)/Q(k+1))).
G.f.: 1/U(0) where U(k) = 1 + x - x*(k+1)/(1 - x*(k+1)/U(k+1)).
G.f.: Q(0)/(1+x) where Q(k) = 1 + (2*k+1)*x/((1+x)-2*x*(1+x)*(k+1)/(2*x*(k+1)+(1+x)/ Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1).
G.f.: T(0) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2-(1-2*x*k)*(1-2*x-2*x*k)/T(k+1)). (End)
0 = a(n)*(a(n+1) + a(n+2) - a(n+3)) + a(n+1)*(a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*a(n+2) if n>=0. - Michael Somos, Jan 25 2014
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(k + x)^k*(k + x + 1)^(n-k) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(k + x)^(n-k)*(k + x - 1)^k, for arbitrary x. - Peter Bala, Feb 19 2017
From Peter Luschny, Jun 20 2017: (Start)
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(-j-1, -n-1)*abs(Stirling1(j, k)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Pochhammer(n-k+1, k) (cf. A008279). (End)
a(n) = n! - Sum_{j=0..n-1} binomial(n,j) * a(j). - Alois P. Heinz, Jan 23 2019
Sum_{n>=2} 1/a(n) = A281682. - Amiram Eldar, Nov 09 2020
a(n) = KummerU(-n, -n, -1). - Peter Luschny, May 10 2022
a(n) = (-1)^n*Sum_{k=0..n} Bell(k)*Stirling1(n+1, k+1). - Mélika Tebni, Jul 05 2022

Extensions

Minor edits by M. F. Hasler, Jan 16 2017

A001563 a(n) = n*n! = (n+1)! - n!.

Original entry on oeis.org

0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 0

Views

Author

Keywords

Comments

A similar sequence, with the initial 0 replaced by 1, namely A094258, is defined by the recurrence a(2) = 1, a(n) = a(n-1)*(n-1)^2/(n-2). - Andrey Ryshevich (ryshevich(AT)notes.idlab.net), May 21 2002
Denominators in power series expansion of E_1(x) + gamma + log(x), x > 0. - Michael Somos, Dec 11 2002
If all the permutations of any length k are arranged in lexicographic order, the n-th term in this sequence (n <= k) gives the index of the permutation that rotates the last n elements one position to the right. E.g., there are 24 permutations of 4 items. In lexicographic order they are (0,1,2,3), (0,1,3,2), (0,2,1,3), ... (3,2,0,1), (3,2,1,0). Permutation 0 is (0,1,2,3), which rotates the last 1 element, i.e., it makes no change. Permutation 1 is (0,1,3,2), which rotates the last 2 elements. Permutation 4 is (0,3,1,2), which rotates the last 3 elements. Permutation 18 is (3,0,1,2), which rotates the last 4 elements. The same numbers work for permutations of any length. - Henry H. Rich (glasss(AT)bellsouth.net), Sep 27 2003
Stirling transform of a(n+1)=[4,18,96,600,...] is A083140(n+1)=[4,22,154,...]. - Michael Somos, Mar 04 2004
From Michael Somos, Apr 27 2012: (Start)
Stirling transform of a(n)=[1,4,18,96,...] is A069321(n)=[1,5,31,233,...].
Partial sums of a(n)=[0,1,4,18,...] is A033312(n+1)=[0,1,5,23,...].
Binomial transform of A000166(n+1)=[0,1,2,9,...] is a(n)=[0,1,4,18,...].
Binomial transform of A000255(n+1)=[1,3,11,53,...] is a(n+1)=[1,4,18,96,...].
Binomial transform of a(n)=[0,1,4,18,...] is A093964(n)=[0,1,6,33,...].
Partial sums of A001564(n)=[1,3,4,14,...] is a(n+1)=[1,4,18,96,...].
(End)
Number of small descents in all permutations of [n+1]. A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) =1. Example: a(2)=4 because there are 4 small descents in the permutations 123, 13\2, 2\13, 231, 312, 3\2\1 of {1,2,3} (shown by \). a(n)=Sum_{k=0..n-1}k*A123513(n,k). - Emeric Deutsch, Oct 02 2006
Equivalently, in the notation of David, Kendall and Barton, p. 263, this is the total number of consecutive ascending pairs in all permutations on n+1 letters (cf. A010027). - N. J. A. Sloane, Apr 12 2014
a(n-1) is the number of permutations of n in which n is not fixed; equivalently, the number of permutations of the positive integers in which n is the largest element that is not fixed. - Franklin T. Adams-Watters, Nov 29 2006
Number of factors in a determinant when writing down all multiplication permutations. - Mats Granvik, Sep 12 2008
a(n) is also the sum of the positions of the left-to-right maxima in all permutations of [n]. Example: a(3)=18 because the positions of the left-to-right maxima in the permutations 123,132,213,231,312 and 321 of [3] are 123, 12, 13, 12, 1 and 1, respectively and 1+2+3+1+2+1+3+1+2+1+1=18. - Emeric Deutsch, Sep 21 2008
Equals eigensequence of triangle A002024 ("n appears n times"). - Gary W. Adamson, Dec 29 2008
Preface the series with another 1: (1, 1, 4, 18, ...); then the next term = dot product of the latter with "n occurs n times". Example: 96 = (1, 1, 4, 8) dot (4, 4, 4, 4) = (4 + 4 + 16 + 72). - Gary W. Adamson, Apr 17 2009
Row lengths of the triangle in A030298. - Reinhard Zumkeller, Mar 29 2012
a(n) is also the number of minimum (n-)distinguishing labelings of the star graph S_{n+1} on n+1 nodes. - Eric W. Weisstein, Oct 14 2014
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the right, i.e., a(n) is the permutation with the cycle notation (0 1 ... n-1 n). Compare array A051683 for circular shifts to the right in a broader sense. Compare sequence A007489 for circular shifts to the left. - Tilman Piesk, Apr 29 2017
a(n-1) is the number of permutations on n elements with no cycles of length n. - Dennis P. Walsh, Oct 02 2017
The number of pandigital numbers in base n+1, such that each digit appears exactly once. For example, there are a(9) = 9*9! = 3265920 pandigital numbers in base 10 (A050278). - Amiram Eldar, Apr 13 2020

Examples

			E_1(x) + gamma + log(x) = x/1 - x^2/4 + x^3/18 - x^4/96 + ..., x > 0. - _Michael Somos_, Dec 11 2002
G.f. = x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 218.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 336.
  • F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, equation 37:6:1 at page 354.

Crossrefs

Cf. A163931 (E(x,m,n)), A002775 (n^2*n!), A091363 (n^3*n!), A091364 (n^4*n!).
Cf. sequences with formula (n + k)*n! listed in A282466.
Row sums of A185105, A322383, A322384, A094485.

Programs

  • GAP
    List([0..20], n-> n*Factorial(n) ); # G. C. Greubel, Dec 30 2019
  • Haskell
    a001563 n = a001563_list !! n
    a001563_list = zipWith (-) (tail a000142_list) a000142_list
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    [Factorial(n+1)-Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    A001563 := n->n*n!;
  • Mathematica
    Table[n!n,{n,0,25}] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n * n!)} /* Michael Somos, Dec 11 2002 */
    
  • Sage
    [n*factorial(n) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

From Michael Somos, Dec 11 2002: (Start)
E.g.f.: x / (1 - x)^2.
a(n) = -A021009(n, 1), n >= 0. (End)
The coefficient of y^(n-1) in expansion of (y+n!)^n, n >= 1, gives the sequence 1, 4, 18, 96, 600, 4320, 35280, ... - Artur Jasinski, Oct 22 2007
Integral representation as n-th moment of a function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(x*(x-1)*exp(-x)) dx, for n>=0. This representation may not be unique. - Karol A. Penson, Sep 27 2001
a(0)=0, a(n) = n*a(n-1) + n!. - Benoit Cloitre, Feb 16 2003
a(0) = 0, a(n) = (n - 1) * (1 + Sum_{i=1..n-1} a(i)) for i > 0. - Gerald McGarvey, Jun 11 2004
Arises in the denominators of the following identities: Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)) = 1/18, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)*(n+4)) = 1/96, etc. The general expression is Sum_{n>=k} 1/C(n, k) = k/(k-1). - Dick Boland, Jun 06 2005 [And the general expression implies that Sum_{n>=1} 1/(n*(n+1)*...*(n+k-1)) = (Sum_{n>=k} 1/C(n, k))/k! = 1/((k-1)*(k-1)!) = 1/a(k-1), k >= 2. - Jianing Song, May 07 2023]
a(n) = Sum_{m=2..n+1} |Stirling1(n+1, m)|, n >= 1 and a(0):=0, where Stirling1(n, m) = A048994(n, m), n >= m = 0.
a(n) = 1/(Sum_{k>=0} k!/(n+k+1)!), n > 0. - Vladeta Jovovic, Sep 13 2006
a(n) = Sum_{k=1..n(n+1)/2} k*A143946(n,k). - Emeric Deutsch, Sep 21 2008
The reciprocals of a(n) are the lead coefficients in the factored form of the polynomials obtained by summing the binomial coefficients with a fixed lower term up to n as the upper term, divided by the term index, for n >= 1: Sum_{k = i..n} C(k, i)/k = (1/a(n))*n*(n-1)*..*(n-i+1). The first few such polynomials are Sum_{k = 1..n} C(k, 1)/k = (1/1)*n, Sum_{k = 2..n} C(k, 2)/k = (1/4)*n*(n-1), Sum_{k = 3..n} C(k, 3)/k = (1/18)*n*(n-1)*(n-2), Sum_{k = 4..n} C(k, 4)/k = (1/96)*n*(n-1)*(n-2)*(n-3), etc. - Peter Breznay (breznayp(AT)uwgb.edu), Sep 28 2008
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,1,-2), (n >= 1). - Milan Janjic, Mar 01 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.796599599... [Jolley eq. 289]
G.f.: 2*x*Q(0), where Q(k) = 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: W(0)*(1-sqrt(x)) - 1, where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+2)/(sqrt(x)*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 18 2013
G.f.: T(0)/x - 1/x, where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
G.f.: Q(0)*(1-x)/x - 1/x, where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
D-finite with recurrence: a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Jan 14 2020
a(n) = (-1)^(n+1)*(n+1)*Sum_{k=1..n} A094485(n,k)*Bernoulli(k). The inverse of the Worpitzky representation of the Bernoulli numbers. - Peter Luschny, May 28 2020
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n>=1} 1/a(n) = Ei(1) - gamma = A229837.
Sum_{n>=1} (-1)^(n+1)/a(n) = gamma - Ei(-1) = A239069. (End)
a(n) = Gamma(n)*A000290(n) for n > 0. - Jacob Szlachetka, Jan 01 2022

A045943 Triangular matchstick numbers: a(n) = 3*n*(n+1)/2.

Original entry on oeis.org

0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198, 234, 273, 315, 360, 408, 459, 513, 570, 630, 693, 759, 828, 900, 975, 1053, 1134, 1218, 1305, 1395, 1488, 1584, 1683, 1785, 1890, 1998, 2109, 2223, 2340, 2460, 2583, 2709, 2838, 2970, 3105, 3243, 3384, 3528
Offset: 0

Views

Author

Keywords

Comments

Also, 3 times triangular numbers, a(n) = 3*A000217(n).
In the 24-bit RGB color cube, the number of color-lattice-points in r+g+b = n planes at n < 256 equals the triangular numbers. For n = 256, ..., 765 the number of legitimate color partitions is less than A000217(n) because {r,g,b} components cannot exceed 255. For n = 256, ..., 511, the number of non-color partitions are computable with A045943(n-255), while for n = 512, ..., 765, the number of color points in r+g+b planes equals A000217(765-n). - Labos Elemer, Jun 20 2005
If a 3-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
a(n) is also the smallest number that may be written both as the sum of n-1 consecutive positive integers and n consecutive positive integers. - Claudio Meller, Oct 08 2010
For n >= 3, a(n) equals 4^(2+n)*Pi^(1 - n) times the coefficient of zeta(3) in the following integral with upper bound Pi/4 and lower bound 0: int x^(n+1) tan x dx. - John M. Campbell, Jul 17 2011
The difference a(n)-a(n-1) = 3*n, for n >= 1. - Stephen Balaban, Jul 25 2011 [Comment clarified by N. J. A. Sloane, Aug 01 2024]
Sequence found by reading the line from 0, in the direction 0, 3, ..., and the same line from 0, in the direction 0, 9, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. This is one of the orthogonal axes of the spiral; the other is A032528. - Omar E. Pol, Sep 08 2011
A005449(a(n)) = A000332(3n + 3) = C(3n + 3, 4), a second pentagonal number of triangular matchstick number index number. Additionally, a(n) - 2n is a pentagonal number (A000326). - Raphie Frank, Dec 31 2012
Sum of the numbers from n to 2n. - Wesley Ivan Hurt, Nov 24 2015
Number of orbits of Aut(Z^7) as function of the infinity norm (n+1) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 5376 or 17920 or 20160. - Philippe A.J.G. Chevalier, Dec 28 2015
Also the number of 4-cycles in the (n+4)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Number of terms less than 10^k, k=0,1,2,3,...: 1, 3, 8, 26, 82, 258, 816, 2582, 8165, 25820, 81650, 258199, 816497, 2581989, 8164966, ... - Muniru A Asiru, Jan 24 2018
Numbers of the form 3*m*(2*m + 1) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Partial sums of A008585. - Omar E. Pol, Jun 20 2018
Column 1 of A273464. (Number of ways to select a unit lozenge inside an isosceles triangle of side length n; all vertices on a hexagonal lattice.) - R. J. Mathar, Jul 10 2019
Total number of pips in the n-th suit of a double-n domino set. - Ivan N. Ianakiev, Aug 23 2020

Examples

			From _Stephen Balaban_, Jul 25 2011: (Start)
T(n), the triangular numbers = number of nodes,
a(n-1) = number of edges in the T(n) graph:
       o    (T(1) = 1, a(0) = 0)
       o
      / \   (T(2) = 3, a(1) = 3)
     o - o
       o
      / \
     o - o  (T(3) = 6, a(2) = 9)
    / \ / \
   o - o - o
... [Corrected by _N. J. A. Sloane_, Aug 01 2024] (End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 543.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
A diagonal of A010027.
Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A115067, A008585, A005843, A001477, A000217.
Cf. A027480 (partial sums).
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
This sequence: Sum_{k = n..2*n} k.
Cf. A304993: Sum_{k = n..2*n} k*(k+1)/2.
Cf. A050409: Sum_{k = n..2*n} k^2.
Similar sequences are listed in A316466.

Programs

Formula

a(n) is the sum of n+1 integers starting from n, i.e., 1+2, 2+3+4, 3+4+5+6, 4+5+6+7+8, etc. - Jon Perry, Jan 15 2004
a(n) = A126890(n+1,n-1) for n>1. - Reinhard Zumkeller, Dec 30 2006
a(n) + A145919(3*n+3) = 0. - Matthew Vandermast, Oct 28 2008
a(n) = A000217(2*n) - A000217(n-1); A179213(n) <= a(n). - Reinhard Zumkeller, Jul 05 2010
a(n) = a(n-1)+3*n, n>0. - Vincenzo Librandi, Nov 18 2010
G.f.: 3*x/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = A005448(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A001477(n)+A000290(n)+A000217(n). - J. M. Bergot, Dec 08 2012
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2. - Wesley Ivan Hurt, Nov 24 2015
a(n) = A027480(n)-A027480(n-1). - Peter M. Chema, Jan 18 2017.
2*a(n)+1 = A003215(n). - Miquel Cerda, Jan 22 2018
a(n) = T(2*n) - T(n-1), where T(n) = A000217(n). In general, T(k)*T(n) = Sum_{i=0..k-1} (-1)^i*T((k-i)*(n-i)). - Charlie Marion, Dec 06 2020
E.g.f.: 3*exp(x)*x*(2 + x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/3. (End)
Product_{n>=1} (1 - 1/a(n)) = -(3/(2*Pi))*cos(sqrt(11/3)*Pi/2). - Amiram Eldar, Feb 21 2023

A000255 a(n) = n*a(n-1) + (n-1)*a(n-2), a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 3, 11, 53, 309, 2119, 16687, 148329, 1468457, 16019531, 190899411, 2467007773, 34361893981, 513137616783, 8178130767479, 138547156531409, 2486151753313617, 47106033220679059, 939765362752547227, 19690321886243846661, 432292066866171724421
Offset: 0

Views

Author

Keywords

Comments

a(n) counts permutations of [1,...,n+1] having no substring [k,k+1]. - Len Smiley, Oct 13 2001
Also, for n > 0, determinant of the tridiagonal n X n matrix M such that M(i,i)=i and for i=1..n-1, M(i,i+1)=-1, M(i+1,i)=i. - Mario Catalani (mario.catalani(AT)unito.it), Feb 04 2003
Also, for n > 0, maximal permanent of a nonsingular n X n (0,1)-matrix, which is achieved by the matrix with just n-1 0's, all on main diagonal. [For proof, see next entry.] - W. Edwin Clark, Oct 28 2003
Proof from Richard Brualdi and W. Edwin Clark, Nov 15 2003: Let n >= 4. Take an n X n (0,1)-matrix A which is nonsingular. It has t >= n-1, 0's, otherwise there will be two rows of all 1's. Let B be the matrix obtained from A by replacing t-(n-1) of A's 0's with 1's. Let D be the matrix with all 1's except for 0's in the first n-1 positions on the diagonal. This matrix is easily seen to be non-singular. Now we have per(A) < = per(B) < = per (D), where the first inequality follows since replacing 0's by 1's cannot decrease the permanent and the second from Corollary 4.4 in the Brualdi et al. reference, which shows that per(D) is the maximum permanent of ANY n X n matrix with n -1 0's. Corollary 4.4 requires n >= 4. a(n) for n < 4 can be computed directly.
With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=1 and n zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, pp. 201-202. - Jaap Spies, Dec 12 2003
Number of fixed-point-free permutations of n+2 that begin with a 2; e.g., for 1234, we have 2143, 2341, 2413, so a(2)=3. Also number of permutations of 2..n+2 that have no agreements with 1..n+1. E.g., for 123 against permutations of 234, we have 234, 342 and 432. Compare A047920. - Jon Perry, Jan 23 2004. [This can be proved by the standard argument establishing that d(n+2) = (n+1)(d(n+1)+d(n)) for derangements A000166 (n+1 choices of where 1 goes, then either 1 is in a transposition, or in a cycle of length at least 3, etc.). - D. G. Rogers, Aug 28 2006]
Stirling transform of A006252(n+1)=[1,1,2,4,14,38,...] is a(n)=[1,3,11,53,309,...]. - Michael Somos, Mar 04 2004
a(n+1) is the sequence of numerators of the self-convergents to 1/(e-2); see A096654. - Clark Kimberling, Jul 01 2004
Euler's interpretation was "fixedpoint-free permutations beginning with 2" and he listed the terms up to 148329 (although he was blind at the time). - Don Knuth, Jan 25 2007
Equals lim_{k->infinity} A153869^k. - Gary W. Adamson, Jan 03 2009
Hankel transform is A059332. - Paul Barry, Apr 22 2009
This sequence appears in the analysis of Euler's divergent series 1 - 1! + 2! - 3! + 4! ... by Lacroix, see Hardy. For information about this and related divergent series see A163940. - Johannes W. Meijer, Oct 16 2009
a(n), n >= 1, enumerates also the ways to distribute n beads, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and one open cord allowed to have any number of beads. Each beadless necklace as well as the beadless cord contributes a factor 1 in the counting, e.g., a(0):=1*1=1. There are k! possibilities for the cord with k>=0 beads, which means that the two ends of the cord should be considered as fixed, in short: a fixed cord. This produces for a(n) the exponential (aka binomial) convolution of the sequences {n!=A000142(n)} and the subfactorials {A000166(n)}.
See the formula below. Alternatively, the e.g.f. for this problem is seen to be (exp(-x)/(1-x))*(1/(1-x)), namely the product of the e.g.f.s for the subfactorials (from the unordered necklace problem, without necklaces with exactly one bead) and the factorials (from the fixed cord problem). Therefore the recurrence with inputs holds also. a(0):=1. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010
a(n) = (n-1)a(n-1) + (n-2)a(n-2) gives the same sequence offset by a 1. - Jon Perry, Sep 20 2012
Also, number of reduced 2 X (n+2) Latin rectangles. - A.H.M. Smeets, Nov 03 2013
Second column of Euler's difference table (second diagonal in example of A068106). - Enrique Navarrete, Dec 13 2016
If we partition the permutations of [n+2] in A000166 according to their starting digit, we will get (n+1) equinumerous classes each of size a(n) (the class starting with the digit 1 is empty since no derangement starts with 1). Hence, A000166(n+2)=(n+1)*a(n), so a(n) is the size of each nonempty class of permutations of [n+2] in A000166. For example, for n=3 we have 44=4*11 (see link). - Enrique Navarrete, Jan 11 2017
For n >= 1, the number of circular permutations (in cycle notation) on [n+2] that avoid substrings (j,j+2), 1 <= j <= n. For example, for n=2, the 3 circular permutations in S4 that avoid substrings {13,24} are (1234),(1423),(1432). Note that each of these circular permutations represent 4 permutations in one-line notation (see link 2017). - Enrique Navarrete, Feb 15 2017
The sequence a(n) taken modulo a positive integer k is periodic with exact period dividing k when k is even and dividing 2*k when k is odd. This follows from the congruence a(n+k) = (-1)^k*a(n) (mod k) holding for all n and k, which in turn is easily proved by induction making use of the given recurrences. - Peter Bala, Nov 21 2017
Number of permutations of [n] where the k-th fixed points are k-colored and all other points are unicolored. - Alois P. Heinz, Apr 28 2025

Examples

			a(3)=11: 1 3 2 4; 1 4 3 2; 2 1 4 3; 2 4 1 3; 3 2 1 4; 3 2 4 1; 4 1 3 2; 4 2 1 3; 4 3 2 1; 2 4 3 1; 3 1 4 2. The last two correspond to (n-1)*a(n-2) since they contain a [j,n+1,j+1].
Cord-necklaces problem. For n=4 one considers the following weak two part compositions of 4: (4,0), (2,2), (1,3), and (0,4), where (3,1) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively 4!*1, (binomial(4,2)*2)*sf(2), (binomial(4,1)*1)*sf(3), and 1*sf(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there). This adds up as 24 + 6*2 + 4*2 + 9 = 53 = a(4). - _Wolfdieter Lang_, Jun 02 2010
G.f. = 1 + x + 3*x^2 + 11*x^3 + 53*x^4 + 309*x^5 + 2119*x^6 + 16687*x^7 + ...
		

References

  • Richard A. Brualdi and Herbert J. Ryser, Combinatorial Matrix Theory, Camb. Univ. Press, 1991, Section 7.2, p. 202.
  • Charalambos A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 179, Table 5.4 and p. 177 (5.1).
  • CRC Handbook of Combinatorial Designs, 1996, p. 104.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, pp. 263-264. See Table 7.5.1, row 0; also Table 7.6.1, row 0.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Ya. Vilenkin, Combinatorics, pp. 54 - 56, Academic Press, 1971. Caravan in the Desert, E_n = a(n-1), n >= 1.

Crossrefs

Row sums of triangle in A046740. A diagonal of triangle in A068106.
A052655 gives occurrence count for non-singular (0, 1)-matrices with maximal permanent, A089475 number of different values of permanent, A089480 occurrence counts for permanents all non-singular (0, 1)-matrices, A087982, A087983.
A diagonal in triangle A010027.
a(n) = A086764(n+1,1).

Programs

  • Haskell
    a000255 n = a000255_list !! n
    a000255_list = 1 : 1 : zipWith (+) zs (tail zs) where
       zs = zipWith (*) [1..] a000255_list
    -- Reinhard Zumkeller, Dec 05 2011
    
  • Magma
    I:=[1, 3]; [1] cat  [n le 2 select I[n] else n*Self(n-1)+(n-1)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2018
  • Maple
    a := n -> hypergeom([2,-n], [], 1)*(-1)^n:
    seq(simplify(a(n)), n=0..19); # Peter Luschny, Sep 20 2014
    seq(simplify(KummerU(-n, -n-1, -1)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    c = CoefficientList[Series[Exp[ -z]/(1 - z)^2, {z, 0, 30}], z]; For[n = 0, n < 31, n++; Print[c[[n]]*(n - 1)! ]]
    Table[Subfactorial[n] + Subfactorial[n + 1], {n, 0, 20}] (* Zerinvary Lajos, Jul 09 2009 *)
    RecurrenceTable[{a[n]==n a[n-1]+(n-1)a[n-2],a[0]==1,a[1]==1},a[n], {n,20}] (* Harvey P. Dale, May 10 2011 *)
    a[ n_] := If[ n < 0, 0, Round[ n! (n + 2) / E]] (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ -x] / (1 - x)^2, {x, 0, n}]] (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, (-1)^n HypergeometricPFQ[ {- n, 2}, {}, 1]] (* Michael Somos, Jun 01 2013 *)
    sa[k_Integer]/;k>=2 := SparseArray[{{i_, i_} -> i, Band[{2, 1}] -> -1, {i_, j_} /; (i == j - 1) :> i}, {k, k}]; {1, 1}~Join~Array[Det[sa[#]] &, 20, 2] (* Shenghui Yang, Oct 15 2024 *)
  • PARI
    {a(n) = if( n<0, 0, contfracpnqn( matrix( 2, n, i, j, j - (i==1)))[1, 1])};
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( -x + x * O(x^n)) / (1 - x)^2, n))};
    
  • Sage
    from sage.combinat.sloane_functions import ExtremesOfPermanentsSequence2
    e = ExtremesOfPermanentsSequence2()
    it = e.gen(1,1,1)
    [next(it) for i in range(20)]
    # Zerinvary Lajos, May 15 2009
    

Formula

E.g.f.: exp(-x)/(1-x)^2.
a(n) = Sum_{k=0..n} (-1)^k * (n-k+1) * n!/k!. - Len Smiley
Inverse binomial transform of (n+1)!. - Robert A. Stump (bee_ess107(AT)yahoo.com), Dec 09 2001
a(n-2) = !n/(n - 1) where !n is the subfactorial of n, A000166(n). - Lekraj Beedassy, Jun 18 2002
a(n) = floor((1/e)*n!*(n+2)+1/2). - Benoit Cloitre, Jan 15 2004
Apparently lim_{n->infinity} log(n) - log(a(n))/n = 1. - Gerald McGarvey, Jun 12 2004
a(n) = (n*(n+2)*a(n-1) + (-1)^n)/(n+1) for n >= 1, a(0)=1. See the Charalambides reference.
a(n) = GAMMA(n+3,-1)*exp(-1)/(n+1) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
a(n) = A000166(n) + A000166(n+1).
A002469(n) = (n-2)*a(n-1) + A000166(n). - Gary W. Adamson, Apr 17 2009
If we take b(n) = (-1)^(n+1)*a(n) for n > 0, then for n > 1 the arithmetic mean of the first n terms is -b(n-1). - Franklin T. Adams-Watters, May 20 2010
a(n) = hypergeometric([2,-n],[],1)*(-1)^n = KummerU(2,3+n,-1)*(-1)^n. See the Abramowitz-Stegun handbook (for the reference see e.g. A103921) p. 504, 13.1.10, and for the recurrence p. 507, 13.4.16. - Wolfdieter Lang, May 20 2010
a(n) = n!*(1 + Sum_{k=0..n-2} sf(n-k)/(n-k)!) with the subfactorials sf(n):= A000166(n) (this follows from the exponential convolution). - Wolfdieter Lang, Jun 02 2010
a(n) = 1/(n+1)*floor(((n+1)!+1)/e). - Gary Detlefs, Jul 11 2010
a(n) = (Subfactorial(n+2))/(n+1). - Alexander R. Povolotsky, Jan 26 2011
G.f.: 1/(1-x-2x^2/(1-3x-6x^2/(1-5x-12x^2/(1-7x-20x^2/(1-.../(1-(2n+1)x-(n+1)(n+2)x^2/(1-... (continued fraction). - Paul Barry, Apr 11 2011
G.f.: hypergeom([1,2],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
From Sergei N. Gladkovskii, Sep 24 2012 - Feb 05 2014: (Start)
Continued fractions:
E.g.f. 1/E(0) where E(k) = 1 - 2*x/(1 + x/(2 - x - 2/(1 + x*(k+1)/E(k+1)))).
G.f.: S(x)/x - 1/x = Q(0)/x - 1/x where S(x) = Sum_{k>=0} k!*(x/(1+x))^k, Q(k) = 1 + (2*k + 1)*x/(1 + x - 2*x*(1+x)*(k+1)/(2*x*(k+1) + (1+x)/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + x - x*(k+2)/(1 - x*(k+1)/Q(k+1)).
G.f.: 1/x/Q(0) where Q(k) = 1/x - (2*k+1) - (k+2)*(k+1)/Q(k+1).
G.f.: (1+x)/(x*Q(0)) - 1/x where Q(k) = 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1).
G.f.: 2/x/G(0) - 1/x where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+1) - 1 + x*(2*k+2)/ G(k+1))).
G.f.: ((Sum_{k>=0} k!*(x/(1+x))^k) - 1)/x = Q(0)/(2*x) - 1/x where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1+x)/Q(k+1))).
G.f.: W(0) where W(k) = 1 - x*(k+1)/(x*(k+1) - 1/(1 - x*(k+2)/(x*(k+1) - 1/W(k+1)))).
G.f.: G(0)/(1-x) where G(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - (1-x*(1+2*k))*(1-x*(3+2*k))/G(k+1)). (End)
From Peter Bala, Sep 20 2013: (Start)
The sequence b(n) := n!*(n + 2) satisfies the defining recurrence for a(n) but with the starting values b(0) = 2 and b(1) = 3. This leads to the finite continued fraction expansion a(n) = n!*(n+2)*( 1/(2 + 1/(1 + 1/(2 + 2/(3 + ... + (n-1)/n)))) ), valid for n >= 2.
Also a(n) = n!*(n+2)*( Sum_{k = 0..n} (-1)^k/(k+2)! ). Letting n -> infinity gives the infinite continued fraction expansion 1/e = 1/(2 + 1/(1 + 1/(2 + 2/(3 + ... + (n-1)/(n + ...)))) ) due to Euler. (End)
0 = a(n)*(+a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(+2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n >= 0. - Michael Somos, May 06 2014
a(n-3) = (n-2)*A000757(n-2) + (2*n-5)*A000757(n-3) + (n-3)*A000757(n-4), n >= 3. - Luis Manuel Rivera Martínez, Mar 14 2015
a(n) = A000240(n) + A000240(n+1), n >= 1. Let D(n) = A000240(n) be the permutations of [n] having no substring in {12,23,...,(n-1)n,n1}. Let d(n) = a(n-1) be the permutations of [n] having no substring in {12,23,...,(n-1)n}. Let d_n1 = A000240(n-1) be the permutations of [n] that have the substring n1 but no substring in {12,23,...,(n-1)n}. Then the link "Forbidden Patterns" shows the bijection d_n1 ~ D(n-1) and since dn = d_n1 U D(n), we get dn = D(n-1) U D(n). Taking cardinalities we get the result for n-1, i.e., a(n-1) = A000240(n-1) + A000240(n). For example, for n=4 in this last equation, we get a(4) = 11 = 3+8. - Enrique Navarrete, Jan 16 2017
a(n) = (n+1)!*hypergeom([-n], [-n-1], -1). - Peter Luschny, Nov 02 2018
Sum_{n>=0} (-1)^n*n!/(a(n)*a(n+1)) = e - 2 (Herzig, 1998). - Amiram Eldar, Mar 07 2022
a(n) = KummerU(-n, -n - 1, -1). - Peter Luschny, May 10 2022

A001339 a(n) = Sum_{k=0..n} (k+1)! binomial(n,k).

Original entry on oeis.org

1, 3, 11, 49, 261, 1631, 11743, 95901, 876809, 8877691, 98641011, 1193556233, 15624736141, 220048367319, 3317652307271, 53319412081141, 909984632851473, 16436597430879731, 313262209859119579, 6282647653285676001, 132266266384961600021, 2916471173788403280463
Offset: 0

Views

Author

Keywords

Comments

Number of arrangements of {1, 2, ..., n, n + 1} containing the element 1. - Emeric Deutsch, Oct 11 2001
From Thomas Wieder, Oct 21 2004: (Start)
"Also the number of hierarchies with unlabeled elements and labeled levels where the levels are permuted.
"Let l_x denote level x, e.g. l_2 is level 2. Let * denote an element. Then l_1*l_2***l_3** denotes a hierarchy of n = 6 unlabeled elements with one element on level 1, three elements on level 2 and 2 elements on level 3.
"E.g. for n=3 one has a(3) = 11 possible hierarchies: l_1***, l_1**l_2*, l_1*l_2**, l_2**l_1*, l_2*l_1**, l_1*l_2*l_3*, l_3*l_1*l_2*, l_2*l_3*l_1*, l_1*l_3*l_2*, l_2*l_1*l_3*, l_3*l_2*l_1*. See A064618 for the number of hierarchies with labeled elements and labeled levels." (End)
Polynomials in A010027 evaluated at 2.
Also the permanent of any n X n cofactor of an n+1 X n+1 version of J+I other than an n X n version of J + I (that is, a (1, 2) matrix with n - 1 2s, at most one per row and column). - D. G. Rogers, Aug 27 2006
a(n) = number of partitions of [n+1] into lists of sets that are both non-nesting and non-crossing. Non-nesting means that no set is contained in the span (interval from min to max) of another. For example, a(1) counts 12, 1-2, 2-1 and a(2) counts 123, 1-23, 23-1, 3-12, 12-3, 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, 3-2-1. - David Callan, Sep 20 2007
Row sums of triangle A137594. - Gary W. Adamson, Jan 28 2008
From Peter Bala, Jul 10 2008: (Start)
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.
a(n) equals the sum of the lengths of the paths between a pair of distinct vertices of the complete graph K_(n + 2) on n + 2 vertices [Hassani]. For example, for the complete graph K_4 with vertex set {A,B,C,D} the 5 paths between A and B are AB of length 1, ACB and ADB, both of length 2 and ACDB and ADCB, both of length 3. The sum of the lengths is 1 + 2 + 2 + 3 + 3 = 11 = a(2).
The number of paths between 2 distinct vertices of K_n is equal to A000522(n - 2); the number of simple cycles through a vertex of K_n equals A038154(n - 1).
Recurrence relation: a(0) = 1, a(1) = 3, a(n) = (n+2)*a(n - 1) - (n - 1)*a(n - 2) for n >= 2. The sequence b(n) := n*n! = A001563(n) satisfies the same recurrence with the initial conditions b(0) = 0, b(1) = 1. This leads to the finite continued fraction expansion a(n)/b(n) = 3 - 1/(4 - 2/(5 - 3/(6 - ... - (n - 1)/(n + 2)))), n >= 1.
Limit_{n->oo} a(n)/b(n) = e = 3 - 1/(4 - 2/(5 - 3/(6 - ... - n/((n + 3) - ...)))).
For n >= 1, a(n) = b(n)*(3 - Sum_{k=2..n} 1/(k!*(k - 1)*k)) (see the formula by Deutsch) since the rhs satisfies the above recurrence with the same initial conditions. Hence e = 3 - Sum_{k>=2} 1/(k!*(k - 1)*k).
For sequences satisfying the more general recurrence a(n) = (n + 1 + r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n; -1), refer to A000522 (r=0), A082030 (r=2), A095000 (r=3) and A095177 (r=4). (End)
Binomial transform of n! Offset 1. a(3) = 11. - Al Hakanson (hawkuu(AT)gmail.com), May 18 2009
Equals eigensequence of a triangle with (1, 2, 3, ...) as the right border and the rest 1's; equivalent to a(n) = [n terms of the sequence (1, 1, 1, ...) followed by (n + 1)] dot [(n + 1) terms of the sequence (1, 1, 3, 11, 245, ...)]. Example: 261 = a(4) = (1, 1, 1, 1, 5) dot (1, 1, 3, 11, 49) = 1 + 1 + 3 + 11 + 245 = 261. - Gary W. Adamson, Jul 24 2010
Number of nonnegative integers which use each digit at most once in base n+1. - Franklin T. Adams-Watters, Oct 02 2011
a(n) is the number of permutations of {1,2,...,n+2} in which there is an increasing contiguous subsequence (ascending run) beginning with 1 and ending with n+2. The number of such permutations with exactly k, 0<=k<=n, elements between the 1 and (n+2) is given by A132159(n,k) whose row sums equal this sequence. See example. - Geoffrey Critzer, Feb 15 2013

Examples

			G.f. = 1 + 3*x + 11*x^2 + 49*x^3 + 261*x^4 + 1631*x^5 + 11743*x^6 + 95901*x^7 + ...
a(2) = 11: {1, 12, 21, 13, 31, 123, 132, 213, 231, 312, 321}.
a(2) = 11 because we have 11 permutations of {1,2,3,4} (written in one line notation) that have an increasing subsequence beginning with 1 and ending with 4: 1,2,3,4; 1,2,4,3; 1,3,4,2; 1,4,2,3; 1,4,3,2; 2,1,3,4; 2,1,4,3; 2,3,1,4; 3,1,2,4; 3,1,4,2; 3,2,1,4. - _Geoffrey Critzer_, Feb 15 2013
		

References

  • A. Hordijk, Markov Decision Chains, pp. 97-103 in Images of SMC Research, 1996, Stichting Mathematisch Centrum, Amsterdam, Netherlands, 1996. See p. 103.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 56, ex. 232.

Crossrefs

a(n) = A000522(n+1) - A000522(n).
First differences of A000522, A007526, A026243, A073591.
Equals (1/2)*A006183(n-2).
Equals A036918(n+1) + 1.
Leftmost column of A276588.
Cf. also A136104.

Programs

  • GAP
    A001339:=List([0..20],n-> Sum([0..n], k-> Factorial(k+1)*Binomial(n,k))); # Muniru A Asiru, Feb 17 2018
    
  • Magma
    [Factorial(n)*(&+[(n-k+1)/Factorial(k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 15 2019
    
  • Maple
    a:=proc(n) options operator, arrow: factorial(n)*n*(3-(sum(1/(j*(j-1)*factorial(j)), j=2..n))) end proc: 1, seq(a(n),n=1..20); # Emeric Deutsch, Apr 12 2008
    a := n -> hypergeom([2, -n], [], -1); seq(simplify(a(n)), n=0..18); # Peter Luschny, Sep 20 2014
  • Mathematica
    a[n_] := n!*Sum[(k+1)/(n-k)!, {k, 0, n}]; a /@ Range[0, 20] (* Jean-François Alcover, Jul 13 2011 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[x] / (1 - x)^2, {x, 0, n}]] (* Michael Somos, Oct 20 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp(x + x * O(x^n)) / (1 - x)^2, n))} /* Michael Somos, Mar 04 2004 */
    
  • PARI
    vector(20, n, n--; n!*sum(k=0,n,(n-k+1)/k!)) \\ G. C. Greubel, Jul 15 2019
    
  • Sage
    [factorial(n)*sum((n-k+1)/factorial(k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 15 2019

Formula

E.g.f.: exp(x)/(1-x)^2.
a(n) = round(evalf(exp(1)*(n-1)*(n-1)!)) (n>1).
a(n) = floor(n*n!*e) + 1. - Melvin J. Knight (knightmj(AT)juno.com), May 30 2001
a(n) = {e*n*n!} for n > 0, where {x} denotes the nearest integer part. Proposed by Simon Plouffe, March 1993.
The n-th row of array A089900 is the n-th binomial transform of this sequence. The (n+1)-th term of the n-th binomial transform is (n+1)^(n+1), for n >= 0. E.g., the 5th term of the 4th binomial transform is 5^5: [1, 7, 51, 389, 3125, ...]. - Paul D. Hanna, Nov 14 2003
G.f.: Sum_{k>=0} k! * (x / (1 - x))^k. - Michael Somos, Mar 04 2004
a(n) = Sum_{k = 0..n} A046716(n, k)*2^(n-k). - Philippe Deléham, Jun 12 2004
(n-1)*a(n) = n^2*a(n-1)-1. - Vladeta Jovovic, Sep 04 2004
a(n) = Sum_{k=0..n} P(n, k)*(k+1). - Ross La Haye, Aug 28 2005
a(n) = n!*n*(3 - Sum_{j=2..n} 1/(j*(j-1)*j!)) for n>=1. - Emeric Deutsch, Apr 12 2008
a(n) = (a(n-1)^2 + 2 * a(n-2)^2 + a(n-2) * a(n-3) - 4 * a(n-1) * a(n-3)) / (a(n-2) - a(n-3)) if n>1. - Michael Somos, Oct 20 2011
E.g.f.:1/Q(0); Q(k) = 1 - 2*x/(1+x/(2-x-2/(1-x*(k+1)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
G.f.: 1/Q(0), where Q(k) = 1 - x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
G.f.: Q(0)/x - 1/x, where Q(k) = 1 + (2*k + 1)*x/( 1 - x - 2*x*(1-x)*(k+1)/(2*x*(k+1) + (1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 09 2013
G.f.: (2/x)/G(0) - 1/x, where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+3) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: Q(0)/(2*x) - 1/x, where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(k+1)/( x*(k+2) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013
a(n) = hypergeometric([2, -n], [], -1). - Peter Luschny, Sep 20 2014
Upper and bottom right terms of the infinite 2 X 2 matrix product_{N=1,2,3,...} [(1,1); (1,N)]. - Gary W. Adamson, Jul 28 2016
a(n) = R(n,n+1,n) where R(x,y,z) is defined to be R(x+1,y,z+1) = R(y,x,x) + R(z,y,z), R(0,y,z+1) = R(z,y,z), R(x+1,y,0) = R(y,x,x), and R(0,y,0) = y. - David M. Cerna, Feb 16 2018
a(n) = (n + 1)!*hypergeom([-n], [-n-1], 1). - Peter Luschny, Nov 02 2018
a(n) = Integral_{x=0..1} (-LambertW(-1,-x/e))^n dx. - Gleb Koloskov, Jul 25 2021
a(n) = KummerU(-n, -n-1, 1). - Peter Luschny, May 10 2022

Extensions

Typo in description in 1995 Encyclopedia of Integer Sequences corrected Mar 15 1997
Link updated by Susanne Wienand, Nov 19 2011

A384175 Number of subsets of {1..n} with all distinct lengths of maximal runs (increasing by 1).

Original entry on oeis.org

1, 2, 4, 7, 13, 24, 44, 77, 135, 236, 412, 713, 1215, 2048, 3434, 5739, 9559, 15850, 26086, 42605, 69133, 111634, 179602, 288069, 460553, 733370, 1162356, 1833371, 2878621, 4501856, 7016844, 10905449, 16904399, 26132460, 40279108, 61885621, 94766071, 144637928
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2025

Keywords

Examples

			The subset {2,3,5,6,7,9} has maximal runs ((2,3),(5,6,7),(9)), with lengths (2,3,1), so is counted under a(9).
The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {2}    {2}      {2}
           {1,2}  {3}      {3}
                  {1,2}    {4}
                  {2,3}    {1,2}
                  {1,2,3}  {2,3}
                           {3,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

For equal instead of distinct lengths we have A243815.
These subsets are ranked by A328592.
The complement is counted by A384176.
For anti-runs instead of runs we have A384177, ranks A384879.
For partitions instead of subsets we have A384884, A384178, A384886, A384880.
For permutations instead of subsets we have A384891, equal instead of distinct A384892.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)={my(o=(1-x^(n+1))/(1-x)*O(y^(n+2)),p=prod(i=1,n,1+o+x*y^(i+1)/(1-y),1/(1-y)));p=subst(serlaplace(p),x,1);Vec(p-1)} \\ Christian Sievers, Jun 18 2025

Extensions

a(21) and beyond from Christian Sievers, Jun 18 2025

A384893 Triangle read by rows where T(n,k) is the number of subsets of {1..n} with k maximal anti-runs (increasing by more than 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 7, 5, 2, 1, 1, 12, 10, 6, 2, 1, 1, 20, 20, 13, 7, 2, 1, 1, 33, 38, 29, 16, 8, 2, 1, 1, 54, 71, 60, 39, 19, 9, 2, 1, 1, 88, 130, 122, 86, 50, 22, 10, 2, 1, 1, 143, 235, 241, 187, 116, 62, 25, 11, 2, 1, 1, 232, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2025

Keywords

Examples

			The subset {3,6,7,9,11,12} has maximal anti-runs ((3,6),(7,9,11),(12)), so is counted under T(12,3).
The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), so is counted under T(12,3).
Row n = 5 counts the following subsets:
  {}  {1}      {1,2}    {1,2,3}    {1,2,3,4}  {1,2,3,4,5}
      {2}      {2,3}    {2,3,4}    {2,3,4,5}
      {3}      {3,4}    {3,4,5}
      {4}      {4,5}    {1,2,3,5}
      {5}      {1,2,4}  {1,2,4,5}
      {1,3}    {1,2,5}  {1,3,4,5}
      {1,4}    {1,3,4}
      {1,5}    {1,4,5}
      {2,4}    {2,3,5}
      {2,5}    {2,4,5}
      {3,5}
      {1,3,5}
Triangle begins:
   1
   1   1
   1   2   1
   1   4   2   1
   1   7   5   2   1
   1  12  10   6   2   1
   1  20  20  13   7   2   1
   1  33  38  29  16   8   2   1
   1  54  71  60  39  19   9   2   1
   1  88 130 122  86  50  22  10   2   1
   1 143 235 241 187 116  62  25  11   2   1
   1 232 420 468 392 267 150  75  28  12   2   1
   1 376 744 894 806 588 363 188  89  31  13   2   1
		

Crossrefs

Column k = 1 is A000071.
Row sums are A000079.
Column k = 2 is A001629.
For runs instead of anti-runs we have A034839, for strict partitions A116674.
The case containing n is A053538.
For integer partitions instead of subsets we have A268193, strict A384905.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Length[Split[#,#2!=#1+1&]]==k&]],{n,0,10},{k,0,n}]

A001564 2nd differences of factorial numbers.

Original entry on oeis.org

1, 3, 14, 78, 504, 3720, 30960, 287280, 2943360, 33022080, 402796800, 5308934400, 75203251200, 1139544806400, 18394619443200, 315149522688000, 5711921639424000, 109196040425472000, 2196014181064704000, 46346783255764992000, 1024251745442365440000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of isolated fixed points (i.e. adjacent fixed points are not isolated) in all permutations of [n+2]. Example: a(2)=14 because we have (the isolated fixed points are marked) 1'423, 1'324', 1'342, 1'43'2, 413'2, 3124', 42'13, 2314', 243'1, 32'14', 32'41. - Emeric Deutsch, Apr 18 2009
The average of the first n terms is n factorial. - Franklin T. Adams-Watters, May 20 2010
Number of blocks in all permutations of [n+1]. A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 5412367 has 4 blocks: 5, 4, 123, and 67. Example: a(2)=14 because the permutations of [3], separated into blocks, are 123, 1-3-2, 2-1-3, 23-1, 3-12, 3-2-1 with 1+3+3+2+2+3=14 blocks. - Emeric Deutsch, Jul 12 2010
a(n) equals n+1 times the permanent of the (n+1) X (n+1) matrix with 1/(n+1) in the top right corner and 1's everywhere else. - John M. Campbell, May 25 2011
Number of permutations s of [n+2] where 2 designated elements are not mapped to themselves, e.g., s(1) != 1 and s(2) != 2. See Janjić article. - Benjamin Schreyer, May 07 2025

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(n^2+n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Apr 10 2015
  • Maple
    seq(factorial(n)*(n^2+n+1), n = 0 .. 20); # Emeric Deutsch, Apr 18 2009
  • Mathematica
    Range[0,20]! CoefficientList[Series[(1+x^2)/(1-x)^3,{x,0,20}],x]
    Differences[Range[0, 25]!, 2] (* Paolo Xausa, Jul 17 2025 *)
  • PARI
    Vec(serlaplace((1+x^2)/(1-x)^3 + O(x^30))) \\ Michel Marcus, Apr 10 2015
    

Formula

a(n) = (n^2 + n + 1)*n! = A002061(n-1)*A000142(n). - Mitch Harris, Jul 10 2008
E.g.f.: (1+x^2)/(1-x)^3.
a(n) = A001563(n+1) - A001563(n). - Robert Israel, Apr 13 2015
a(n) = A306209(n+2,n). - Alois P. Heinz, Jan 29 2019
D-finite with recurrence a(n) +(-n-3)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Jul 01 2022

Extensions

Comment edited by Franklin T. Adams-Watters, May 20 2010

A384177 Number of subsets of {1..n} with all distinct lengths of maximal anti-runs (increasing by more than 1).

Original entry on oeis.org

1, 2, 3, 5, 10, 19, 35, 62, 109, 197, 364, 677, 1251, 2288, 4143, 7443, 13318, 23837, 42809, 77216, 139751, 253293, 458800, 829237, 1494169, 2683316, 4804083, 8580293, 15301324, 27270061, 48607667, 86696300, 154758265, 276453311, 494050894, 882923051
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2025

Keywords

Examples

			The subset {1,2,4,5,7,10} has maximal anti-runs ((1),(2,4),(5,7,10)), with lengths (1,2,3), so is counted under a(10).
The a(0) = 1 through a(5) = 19 subsets:
  {}  {}   {}   {}     {}       {}
      {1}  {1}  {1}    {1}      {1}
           {2}  {2}    {2}      {2}
                {3}    {3}      {3}
                {1,3}  {4}      {4}
                       {1,3}    {5}
                       {1,4}    {1,3}
                       {2,4}    {1,4}
                       {1,2,4}  {1,5}
                       {1,3,4}  {2,4}
                                {2,5}
                                {3,5}
                                {1,2,4}
                                {1,2,5}
                                {1,3,4}
                                {1,3,5}
                                {1,4,5}
                                {2,3,5}
                                {2,4,5}
		

Crossrefs

For runs instead of anti-runs we have A384175, complement A384176.
These subsets are ranked by A384879.
For strict partitions instead of subsets we have A384880, see A384178, A384884, A384886.
For equal instead of distinct lengths we have A384889, for runs A243815.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)={my(o=(1-x^(n+1))/(1-x)*O(y*y^n),p=prod(i=1,(n+1)\2,1+o+x*y^(2*i-1)/(1-y)^(i-1)));p=subst(serlaplace(p),x,1);Vec((p-y)/(1-y)^2)} \\ Christian Sievers, Jun 18 2025

Extensions

a(21) and beyond from Christian Sievers, Jun 18 2025

A384176 Number of subsets of {1..n} without all distinct lengths of maximal runs (increasing by 1).

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 20, 51, 121, 276, 612, 1335, 2881, 6144, 12950, 27029, 55977, 115222, 236058, 481683, 979443
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2025

Keywords

Examples

			The subset {1,3,4,8,9} has maximal runs ((1),(3,4),(8,9)), with lengths (1,2,2), so is counted under a(10).
The a(0) = 0 through a(6) = 20 subsets:
  .  .  .  {1,3}  {1,3}  {1,3}      {1,3}
                  {1,4}  {1,4}      {1,4}
                  {2,4}  {1,5}      {1,5}
                         {2,4}      {1,6}
                         {2,5}      {2,4}
                         {3,5}      {2,5}
                         {1,3,5}    {2,6}
                         {1,2,4,5}  {3,5}
                                    {3,6}
                                    {4,6}
                                    {1,3,5}
                                    {1,3,6}
                                    {1,4,6}
                                    {2,4,6}
                                    {1,2,4,5}
                                    {1,2,4,6}
                                    {1,2,5,6}
                                    {1,3,4,6}
                                    {1,3,5,6}
                                    {2,3,5,6}
		

Crossrefs

For equal instead of distinct lengths the complement is A243815.
These subsets are ranked by the non-members of A328592.
The complement is counted by A384175.
For strict partitions instead of subsets see A384178, A384884, A384886, A384880.
For permutations instead of subsets see A384891, A384892, A010027.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],!UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
Showing 1-10 of 36 results. Next