cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A180195 a(n) = (-1)^n*Sum((-1)^j*b(j), j=1..n), where b(n)=(n-1)!*(n^2 - n + 1) = A001564(n-1) (n>=1).

Original entry on oeis.org

1, 2, 12, 66, 438, 3282, 27678, 259602, 2683758, 30338322, 372458478, 4936475922, 70266775278, 1069278031122, 17325341412078, 297824181275922, 5414097458148078, 103781942967323922, 2092232238097380078, 44254551017667611922, 979997194424697828078, 22675109031076772891922
Offset: 1

Views

Author

Emeric Deutsch, Sep 09 2010

Keywords

Comments

a(n) is the number of blocks of odd size in all permutations of [n].
a(n) is the number of blocks of even size in all permutations of [n+1].
A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. Example: a(2)=2 because in 12 and (2)(1) we have a total of 2 blocks of odd size (shown between parentheses). Also, in 123, 132, 213, (23)1, 3(12), and 321 we have a total of 2 blocks of even size (shown between parentheses).

Crossrefs

Programs

  • Maple
    b := proc (n) options operator, arrow: factorial(n-1)*(n^2-n+1) end proc: a := proc (n) options operator, arrow: (-1)^n*(sum((-1)^j*b(j), j = 1 .. n)) end proc; seq(a(n), n = 1 .. 20);
  • PARI
    a(n) = (-1)^n*sum(j=1, n, (-1)^j*(j-1)!*(j^2-j+1)); \\ Michel Marcus, May 19 2024

Formula

a(n) = Sum(k*A180193(n,k), k>=0).
a(n) = Sum(k*A180194(n+1,k), k>=0).
Conjecture D-finite with recurrence a(n) +(-n-1)*a(n-1) -4*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Jul 24 2022

Extensions

More terms from Michel Marcus, May 19 2024

A001563 a(n) = n*n! = (n+1)! - n!.

Original entry on oeis.org

0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 0

Views

Author

Keywords

Comments

A similar sequence, with the initial 0 replaced by 1, namely A094258, is defined by the recurrence a(2) = 1, a(n) = a(n-1)*(n-1)^2/(n-2). - Andrey Ryshevich (ryshevich(AT)notes.idlab.net), May 21 2002
Denominators in power series expansion of E_1(x) + gamma + log(x), x > 0. - Michael Somos, Dec 11 2002
If all the permutations of any length k are arranged in lexicographic order, the n-th term in this sequence (n <= k) gives the index of the permutation that rotates the last n elements one position to the right. E.g., there are 24 permutations of 4 items. In lexicographic order they are (0,1,2,3), (0,1,3,2), (0,2,1,3), ... (3,2,0,1), (3,2,1,0). Permutation 0 is (0,1,2,3), which rotates the last 1 element, i.e., it makes no change. Permutation 1 is (0,1,3,2), which rotates the last 2 elements. Permutation 4 is (0,3,1,2), which rotates the last 3 elements. Permutation 18 is (3,0,1,2), which rotates the last 4 elements. The same numbers work for permutations of any length. - Henry H. Rich (glasss(AT)bellsouth.net), Sep 27 2003
Stirling transform of a(n+1)=[4,18,96,600,...] is A083140(n+1)=[4,22,154,...]. - Michael Somos, Mar 04 2004
From Michael Somos, Apr 27 2012: (Start)
Stirling transform of a(n)=[1,4,18,96,...] is A069321(n)=[1,5,31,233,...].
Partial sums of a(n)=[0,1,4,18,...] is A033312(n+1)=[0,1,5,23,...].
Binomial transform of A000166(n+1)=[0,1,2,9,...] is a(n)=[0,1,4,18,...].
Binomial transform of A000255(n+1)=[1,3,11,53,...] is a(n+1)=[1,4,18,96,...].
Binomial transform of a(n)=[0,1,4,18,...] is A093964(n)=[0,1,6,33,...].
Partial sums of A001564(n)=[1,3,4,14,...] is a(n+1)=[1,4,18,96,...].
(End)
Number of small descents in all permutations of [n+1]. A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) =1. Example: a(2)=4 because there are 4 small descents in the permutations 123, 13\2, 2\13, 231, 312, 3\2\1 of {1,2,3} (shown by \). a(n)=Sum_{k=0..n-1}k*A123513(n,k). - Emeric Deutsch, Oct 02 2006
Equivalently, in the notation of David, Kendall and Barton, p. 263, this is the total number of consecutive ascending pairs in all permutations on n+1 letters (cf. A010027). - N. J. A. Sloane, Apr 12 2014
a(n-1) is the number of permutations of n in which n is not fixed; equivalently, the number of permutations of the positive integers in which n is the largest element that is not fixed. - Franklin T. Adams-Watters, Nov 29 2006
Number of factors in a determinant when writing down all multiplication permutations. - Mats Granvik, Sep 12 2008
a(n) is also the sum of the positions of the left-to-right maxima in all permutations of [n]. Example: a(3)=18 because the positions of the left-to-right maxima in the permutations 123,132,213,231,312 and 321 of [3] are 123, 12, 13, 12, 1 and 1, respectively and 1+2+3+1+2+1+3+1+2+1+1=18. - Emeric Deutsch, Sep 21 2008
Equals eigensequence of triangle A002024 ("n appears n times"). - Gary W. Adamson, Dec 29 2008
Preface the series with another 1: (1, 1, 4, 18, ...); then the next term = dot product of the latter with "n occurs n times". Example: 96 = (1, 1, 4, 8) dot (4, 4, 4, 4) = (4 + 4 + 16 + 72). - Gary W. Adamson, Apr 17 2009
Row lengths of the triangle in A030298. - Reinhard Zumkeller, Mar 29 2012
a(n) is also the number of minimum (n-)distinguishing labelings of the star graph S_{n+1} on n+1 nodes. - Eric W. Weisstein, Oct 14 2014
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the right, i.e., a(n) is the permutation with the cycle notation (0 1 ... n-1 n). Compare array A051683 for circular shifts to the right in a broader sense. Compare sequence A007489 for circular shifts to the left. - Tilman Piesk, Apr 29 2017
a(n-1) is the number of permutations on n elements with no cycles of length n. - Dennis P. Walsh, Oct 02 2017
The number of pandigital numbers in base n+1, such that each digit appears exactly once. For example, there are a(9) = 9*9! = 3265920 pandigital numbers in base 10 (A050278). - Amiram Eldar, Apr 13 2020

Examples

			E_1(x) + gamma + log(x) = x/1 - x^2/4 + x^3/18 - x^4/96 + ..., x > 0. - _Michael Somos_, Dec 11 2002
G.f. = x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 218.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 336.
  • F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, equation 37:6:1 at page 354.

Crossrefs

Cf. A163931 (E(x,m,n)), A002775 (n^2*n!), A091363 (n^3*n!), A091364 (n^4*n!).
Cf. sequences with formula (n + k)*n! listed in A282466.
Row sums of A185105, A322383, A322384, A094485.

Programs

  • GAP
    List([0..20], n-> n*Factorial(n) ); # G. C. Greubel, Dec 30 2019
  • Haskell
    a001563 n = a001563_list !! n
    a001563_list = zipWith (-) (tail a000142_list) a000142_list
    -- Reinhard Zumkeller, Aug 05 2013
    
  • Magma
    [Factorial(n+1)-Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    A001563 := n->n*n!;
  • Mathematica
    Table[n!n,{n,0,25}] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n * n!)} /* Michael Somos, Dec 11 2002 */
    
  • Sage
    [n*factorial(n) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

From Michael Somos, Dec 11 2002: (Start)
E.g.f.: x / (1 - x)^2.
a(n) = -A021009(n, 1), n >= 0. (End)
The coefficient of y^(n-1) in expansion of (y+n!)^n, n >= 1, gives the sequence 1, 4, 18, 96, 600, 4320, 35280, ... - Artur Jasinski, Oct 22 2007
Integral representation as n-th moment of a function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(x*(x-1)*exp(-x)) dx, for n>=0. This representation may not be unique. - Karol A. Penson, Sep 27 2001
a(0)=0, a(n) = n*a(n-1) + n!. - Benoit Cloitre, Feb 16 2003
a(0) = 0, a(n) = (n - 1) * (1 + Sum_{i=1..n-1} a(i)) for i > 0. - Gerald McGarvey, Jun 11 2004
Arises in the denominators of the following identities: Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)) = 1/18, Sum_{n>=1} 1/(n*(n+1)*(n+2)*(n+3)*(n+4)) = 1/96, etc. The general expression is Sum_{n>=k} 1/C(n, k) = k/(k-1). - Dick Boland, Jun 06 2005 [And the general expression implies that Sum_{n>=1} 1/(n*(n+1)*...*(n+k-1)) = (Sum_{n>=k} 1/C(n, k))/k! = 1/((k-1)*(k-1)!) = 1/a(k-1), k >= 2. - Jianing Song, May 07 2023]
a(n) = Sum_{m=2..n+1} |Stirling1(n+1, m)|, n >= 1 and a(0):=0, where Stirling1(n, m) = A048994(n, m), n >= m = 0.
a(n) = 1/(Sum_{k>=0} k!/(n+k+1)!), n > 0. - Vladeta Jovovic, Sep 13 2006
a(n) = Sum_{k=1..n(n+1)/2} k*A143946(n,k). - Emeric Deutsch, Sep 21 2008
The reciprocals of a(n) are the lead coefficients in the factored form of the polynomials obtained by summing the binomial coefficients with a fixed lower term up to n as the upper term, divided by the term index, for n >= 1: Sum_{k = i..n} C(k, i)/k = (1/a(n))*n*(n-1)*..*(n-i+1). The first few such polynomials are Sum_{k = 1..n} C(k, 1)/k = (1/1)*n, Sum_{k = 2..n} C(k, 2)/k = (1/4)*n*(n-1), Sum_{k = 3..n} C(k, 3)/k = (1/18)*n*(n-1)*(n-2), Sum_{k = 4..n} C(k, 4)/k = (1/96)*n*(n-1)*(n-2)*(n-3), etc. - Peter Breznay (breznayp(AT)uwgb.edu), Sep 28 2008
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,1,-2), (n >= 1). - Milan Janjic, Mar 01 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.796599599... [Jolley eq. 289]
G.f.: 2*x*Q(0), where Q(k) = 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: W(0)*(1-sqrt(x)) - 1, where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+2)/(sqrt(x)*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 18 2013
G.f.: T(0)/x - 1/x, where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013
G.f.: Q(0)*(1-x)/x - 1/x, where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
D-finite with recurrence: a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, Jan 14 2020
a(n) = (-1)^(n+1)*(n+1)*Sum_{k=1..n} A094485(n,k)*Bernoulli(k). The inverse of the Worpitzky representation of the Bernoulli numbers. - Peter Luschny, May 28 2020
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n>=1} 1/a(n) = Ei(1) - gamma = A229837.
Sum_{n>=1} (-1)^(n+1)/a(n) = gamma - Ei(-1) = A239069. (End)
a(n) = Gamma(n)*A000290(n) for n > 0. - Jacob Szlachetka, Jan 01 2022

A047920 Triangular array formed from successive differences of factorial numbers.

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 6, 4, 3, 2, 24, 18, 14, 11, 9, 120, 96, 78, 64, 53, 44, 720, 600, 504, 426, 362, 309, 265, 5040, 4320, 3720, 3216, 2790, 2428, 2119, 1854, 40320, 35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833, 362880, 322560
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of 1,2,...,k,n+1,n+2,...,2n-k that have no agreements with 1,...,n. For example, consider 1234 and 1256, then n=4 and k=2, so T(4,2)=14. Compare A000255 for the case k=1. - Jon Perry, Jan 23 2004
From Emeric Deutsch, Apr 21 2009: (Start)
T(n-1,k-1) is the number of non-derangements of {1,2,...,n} having smallest fixed point equal to k. Example: T(3,1)=4 because we have 4213, 4231, 3214, and 3241 (the permutations of {1,2,3,4} having smallest fixed equal to 2).
Row sums give the number of non-derangement permutations of {1,2,...,n} (A002467).
Mirror image of A068106.
Closely related to A134830, where each row has an extra term (see the Charalambides reference).
(End)
T(n,k) is the number of permutations of {1..n} that don't fix the points 1..k. - Robert FERREOL, Aug 04 2016

Examples

			Triangle begins:
    1;
    1,  0;
    2,  1,  1;
    6,  4,  3,  2;
   24, 18, 14, 11,  9;
  120, 96, 78, 64, 53, 44;
  ...
The left-hand column is the factorial numbers (A000142). The other numbers in the row are calculated by subtracting the numbers in the previous row. For example, row 4 is 6, 4, 3, 2, so row 5 is 4! = 24, 24 - 6 = 18, 18 - 4 = 14, 14 - 3 = 11, 11 - 2 = 9. - _Michael B. Porter_, Aug 05 2016
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 176, Table 5.3. [From Emeric Deutsch, Apr 21 2009]

Crossrefs

Columns give A000142, A001563, A001564, etc. Cf. A047922.
See A068106 for another version of this triangle.
Orthogonal columns: A000166, A000255, A055790. Main diagonal A033815.
Cf. A002467, A068106, A134830. - Emeric Deutsch, Apr 21 2009
Cf. A155521.
T(n+2,n) = 2*A000153(n+1). T(n+3,n) = 6*A000261(n+2). T(n+4,n) = 24*A001909(n+3). T(n+5, n) = 120*A001910(n+4). T(n+6,n) = 720*A176732(n).
T(n+7,n) = 5040*A176733(n) - Richard R. Forberg, Dec 29 2013

Programs

  • Haskell
    a047920 n k = a047920_tabl !! n !! k
    a047920_row n = a047920_tabl !! n
    a047920_tabl = map fst $ iterate e ([1], 1) where
       e (row, n) = (scanl (-) (n * head row) row, n + 1)
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(n-k, j)*d[n-j], j = 0 .. n-k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 17 2009
    # second Maple program:
    T:= proc(n, k) option remember;
         `if`(k=0, n!, T(n, k-1)-T(n-1, k-1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 01 2021
  • Mathematica
    t[n_, k_] = Sum[(-1)^j*Binomial[k, j]*(n-j)!, {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, May 17 2011, after Philippe Deléham *)
    T[n_, k_] := n! Hypergeometric1F1[-k, -n, -1];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten  (* Peter Luschny, Jul 28 2024 *)
  • PARI
    row(n) = vector(n+1, k, k--; sum(j=0, n, (-1)^j * binomial(k, j)*(n-j)!)); \\ Michel Marcus, Sep 04 2021

Formula

t(n, k) = t(n, k-1) - t(n-1, k-1) = t(n, k+1) - t(n-1, k) = n*t(n-1, k) + k*t(n-2, k-1) = (n-1)*t(n-1, k-1) + (k-1)*t(n-2, k-2) = A060475(n, k)*(n-k)!. - Henry Bottomley, Mar 16 2001
T(n, k) = Sum_{j>=0} (-1)^j * binomial(k, j)*(n-j)!. - Philippe Deléham, May 29 2005
T(n,k) = Sum_{j=0..n-k} d(n-j)*binomial(n-k,j), where d(i)=A000166(i) are the derangement numbers. - Emeric Deutsch, Jul 17 2009
Sum_{k=0..n} (k+1)*T(n,k) = A155521(n+1). - Emeric Deutsch, Jul 18 2009
T(n, k) = n!*hypergeom([-k], [-n], -1). - Peter Luschny, Jul 28 2024

A055790 a(n) = n*a(n-1) + (n-2)*a(n-2), a(0) = 0, a(1) = 2.

Original entry on oeis.org

0, 2, 4, 14, 64, 362, 2428, 18806, 165016, 1616786, 17487988, 206918942, 2657907184, 36828901754, 547499510764, 8691268384262, 146725287298888, 2624698909845026, 49592184973992676, 986871395973226286, 20630087248996393888, 451982388752415571082
Offset: 0

Views

Author

Henry Bottomley, Jul 13 2000

Keywords

Comments

With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=1 and n-1 zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202. - Jaap Spies, Dec 12 2003
With a(0) = 1, number of degree-(n+1) permutations p such that p(i) != i+2 for each i=1,2,...,n+1. - Vladeta Jovovic, Jan 03 2003
Equivalently number of degree-(n+1) permutations p such that p(i) != i-2 for each i=1,2,...,n+1.
With a(0) = 1, number of degree-(n+1) permutations without fixed points between 2 and n. - Olivier Gérard, Jul 29 2016
Also column 3 of Euler's difference table (third diagonal in example of A068106). - Enrique Navarrete, Oct 31 2016
For n>=2, the number of circular permutations (in cycle notation) on [n+2] that avoid substrings (j,j+3), 1<=j<=n-1. For example, for n=2, the 4 circular permutations in S4 that avoid the substring {14} are (1234),(1243),(1324),(1342). Note that each of these circular permutations represent 4 permutations in one-line notation (see link 2017). - Enrique Navarrete, Feb 15 2017

Examples

			G.f. = 2*x + 4*x^2 + 14*x^3 + 64*x^4 + 362*x^5 + 2428*x^6 + ...
a(3) = 3*a(2)+(3-2)*a(1) = 12+2 = 14.
for n=1, the 2 permutations of [2] matches:
12, 21
for n=2, the 4 permutations of [3] without 2 as a fixed point are
132, 213, 231, 312.
for n=3, the 14 permutations of [4] without fixed point at 2 or 3 are
1324 1342 1423    2143 2314 2341 2413
3124 3142 3412 3421    4123 4312 4321
		

References

  • Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.

Crossrefs

Cf. A000166 (Derangements, permutations without fixed points ).
Cf. A000255 (permutations with p(i)!=i+1, same type of recurrence).
Apart from first term, appears in triangles A047920 or A068106 of differences of factorials, i.e. as third term of A000142, A001563, A001564, A001565 etc.

Programs

  • Haskell
    a055790 n = a055790_list !! n
    a055790_list = 0 : 2 : zipWith (+)
       (zipWith (*) [0..] a055790_list) (zipWith (*) [2..] $ tail a055790_list)
    -- Reinhard Zumkeller, Mar 05 2012
    
  • Maple
    f := proc(n) option remember; if n <= 1 then 2*n else n*f(n-1)+(n-2)*f(n-2); fi; end;
  • Mathematica
    a[0] = 0; a[1] = 2; a[n_] := a[n] = a[n] = n*a[n - 1] + (n - 2)*a[n - 2];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 14 2017 *)
    RecurrenceTable[{a[0]==0,a[1]==2,a[n]==n*a[n-1]+(n-2)a[n-2]},a,{n,30}] (* Harvey P. Dale, May 07 2018 *)
  • PARI
    a(n) = if(n==0, 0, round((n+3+1/n)*n!/exp(1))) \\ Felix Fröhlich, Jul 29 2016

Formula

For n > 0, a(n) = round[(n+3+1/n)*n!/e] = 2*A000153(n) = A000255(n-1)+A000255(n) = A000166(n-1)+2*A000166(n)+A000166(n+1).
G.f.: Q(0)*(1+x)/x - 1/x - 2, where Q(k)= 1 + (2*k + 1)*x/( (1+x) - 2*x*(1+x)*(k+1)/(2*x*(k+1) + (1+x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: (1+x)^2/x/Q(0) - 1/x - 2, where Q(k)= 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: 2*(1+x)/G(0) - 1-x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+1) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: W(0) -1, where W(k) = 1 - x*(k+2)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ sqrt(Pi/2)*n^n*sqrt(n)*(12*n + 37)/(6*exp(n+1)). - Ilya Gutkovskiy, Jul 29 2016
0 = a(n)*(+a(n+1) + 3*a(n+2) - a(n+3)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for n>=0. - Michael Somos, Nov 01 2016

Extensions

Comments corrected, new interpretation and examples by Olivier Gérard, Jul 29 2016

A068106 Euler's difference table: triangle read by rows, formed by starting with factorial numbers (A000142) and repeatedly taking differences. T(n,n) = n!, T(n,k) = T(n,k+1) - T(n-1,k).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 4, 6, 9, 11, 14, 18, 24, 44, 53, 64, 78, 96, 120, 265, 309, 362, 426, 504, 600, 720, 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 14833, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320, 133496, 148329, 165016, 183822, 205056, 229080, 256320, 287280, 322560, 362880
Offset: 0

Views

Author

N. J. A. Sloane, Apr 12 2002

Keywords

Comments

Triangle T(n,k) (n >= 1, 1 <= k <= n) giving number of ways of winning with (n-k+1)st card in the generalized "Game of Thirteen" with n cards.
From Emeric Deutsch, Apr 21 2009: (Start)
T(n-1,k-1) is the number of non-derangements of {1,2,...,n} having largest fixed point equal to k. Example: T(3,1)=3 because we have 1243, 4213, and 3241.
Mirror image of A047920.
(End)

Examples

			Triangle begins:
[0]    1;
[1]    0,    1;
[2]    1,    1,    2;
[3]    2,    3,    4,    6;
[4]    9,   11,   14,   18,   24;
[5]   44,   53,   64,   78,   96,  120;
[6]  265,  309,  362,  426,  504,  600,  720;
[7] 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040.
		

Crossrefs

Row sums give A002467.
Diagonals give A000142, A001563, A001564, A001565, A001688, A001689, A023043, A023044, A023045, A023046, A023047 (factorials and k-th differences, k=1..10).
See A047920 and A086764 for other versions.
T(2*n, n) is A033815.

Programs

  • Haskell
    a068106 n k = a068106_tabl !! n !! k
    a068106_row n = a068106_tabl !! n
    a068106_tabl = map reverse a047920_tabl
    -- Reinhard Zumkeller, Mar 05 2012
  • Maple
    d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(k, j)*d[n-j], j = 0 .. k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; Emeric Deutsch, Jul 18 2009
  • Mathematica
    t[n_, k_] := Sum[(-1)^j*Binomial[n-k, j]*(n-j)!, {j, 0, n}]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 21 2012, after Philippe Deléham *)
    T[n_, k_] := n! HypergeometricPFQ[{k-n}, {-n}, -1];
    Table[T[n, k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)

Formula

T(n, k) = Sum_{j>= 0} (-1)^j*binomial(n-k, j)*(n-j)!. - Philippe Deléham, May 29 2005
From Emeric Deutsch, Jul 18 2009: (Start)
T(n,k) = Sum_{j=0..k} d(n-j)*binomial(k, j), where d(i) = A000166(i) are the derangement numbers.
Sum_{k=0..n} (k+1)*T(n,k) = A000166(n+2) (the derangement numbers). (End)
T(n, k) = n!*hypergeom([k-n], [-n], -1). - Peter Luschny, Oct 05 2017
D-finite recurrence for columns: T(n,k) = n*T(n-1,k) + (n-k)*T(n-2,k). - Georg Fischer, Aug 13 2022

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
Edited by N. J. A. Sloane, Sep 24 2011

A082030 Expansion of e.g.f. exp(x)/(1-x)^3.

Original entry on oeis.org

1, 4, 19, 106, 685, 5056, 42079, 390454, 4000441, 44881660, 547457611, 7215589954, 102211815589, 1548801969976, 25000879886935, 428332610385166, 7763306399014129, 148412806214119924, 2984692721713278211
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Binomial transform of A001710 (when preceded by 0).
From Peter Bala, Jul 10 2008: (Start)
a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.
Recurrence relation: a(0) = 1, a(1) = 4, a(n) = (n+3)*a(n-1) - (n-1)*a(n-2) for n >= 2. The sequence b(n) := n!*(n^2+n+1) = A001564(n) satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 3. This leads to the finite continued fraction expansion a(n)/b(n) = 1/(1-1/(4-1/(5-2/(6-...-(n-1)/(n+3))))).
Lim_{n -> infinity} a(n)/b(n) = e/2 = 1/(1-1/(4-1/(5-2/(6-...-n/((n+4)-...))))).
a(n) = n!*(n^2+n+1)*Sum_{k = 0..n} 1/(k!*(k^4+k^2+1)) since the rhs satisfies the above recurrence with the same initial conditions. Hence e = 2*Sum_{k >= 0} 1/(k!*(k^4+k^2+1)).
For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A000522 (r = 0), A001339 (r=1), A095000 (r=3) and A095177 (r=4). (End)

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([3, -n], [], -1); seq(simplify(a(n)), n=0..18); # Peter Luschny, Sep 20 2014
    seq(simplify(KummerU(-n, -n - 2, 1)), n = 0..20); # Peter Luschny, May 10 2022
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, (n (n^2 + n + 1) a[n-1] + 1)/(n^2 - n + 1)];
    a /@ Range[0, 18] (* Jean-François Alcover, Oct 16 2019 *)
    With[{nn=20},CoefficientList[Series[Exp[x]/(1-x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    {a(n)=n!*polcoeff(exp(x+x*O(x^n))/(1-x)^3,n)} /* Paul D. Hanna, Sep 30 2011 */
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(k+2)!/2)} /* Paul D. Hanna, Sep 30 2011 */
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(k+1)^(k+1)*(-k)^(n-k))} /* Paul D. Hanna, Sep 30 2011 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(m+1)^(m+1)*x^m/(1+m*x)^(m+1)+x*O(x^n)),n)} /* Paul D. Hanna, Sep 30 2011 */

Formula

E.g.f.: exp(x)/(1-x)^3.
a(n) = A001340(n)/2.
a(n) = Sum_{k=0..n} A046716(n, k)*3^(n-k). - Philippe Deléham, Jun 12 2004
a(n) = Sum_{k=0..n} binomial(n, k)*(k+2)!/2. - Philippe Deléham, Jun 19 2004
a(n) = Sum_{k=0..n} binomial(n,k)*(k+1)^(k+1)*(-k)^(n-k). - Paul D. Hanna, Sep 30 2011
O.g.f.: Sum_{n>=0} (n+1)^(n+1)*x^n/(1+n*x)^(n+1) = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Sep 30 2011
Conjecture: a(n) + (-n-3)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
G.f.: (1-x)/(2*x*Q(0)) - 1/2/x, where Q(k) = 1 - x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(n) = hypergeometric([3, -n], [], -1). - Peter Luschny, Sep 20 2014
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^2 + n + 1 = A001564(n). - Peter Bala, Jul 26 2021
a(n) = KummerU(-n, -n - 2, 1). - Peter Luschny, May 10 2022

A306209 Number A(n,k) of permutations of [n] within distance k of a fixed permutation; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 6, 5, 1, 1, 1, 2, 6, 14, 8, 1, 1, 1, 2, 6, 24, 31, 13, 1, 1, 1, 2, 6, 24, 78, 73, 21, 1, 1, 1, 2, 6, 24, 120, 230, 172, 34, 1, 1, 1, 2, 6, 24, 120, 504, 675, 400, 55, 1, 1, 1, 2, 6, 24, 120, 720, 1902, 2069, 932, 89, 1, 1, 1, 2, 6, 24, 120, 720, 3720, 6902, 6404, 2177, 144, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 29 2019

Keywords

Comments

A(n,k) counts permutations p of [n] such that |p(j)-j| <= k for all j in [n].

Examples

			A(4,1) = 5: 1234, 1243, 1324, 2134, 2143.
A(5,2) = 31: 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235, 14253, 14325, 14523, 21345, 21354, 21435, 21453, 21534, 21543, 23145, 23154, 24135, 24153, 31245, 31254, 31425, 31524, 32145, 32154, 34125.
Square array A(n,k) begins:
  1,  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,  2,   2,    2,    2,     2,     2,     2,     2, ...
  1,  3,   6,    6,    6,     6,     6,     6,     6, ...
  1,  5,  14,   24,   24,    24,    24,    24,    24, ...
  1,  8,  31,   78,  120,   120,   120,   120,   120, ...
  1, 13,  73,  230,  504,   720,   720,   720,   720, ...
  1, 21, 172,  675, 1902,  3720,  5040,  5040,  5040, ...
  1, 34, 400, 2069, 6902, 17304, 30960, 40320, 40320, ...
		

Crossrefs

Rows n=1-2 give: A000012, A040000.
Main diagonal gives A000142.
A(2n,n) gives A048163(n+1).
A(2n+1,n) gives A092552(n+1).
A(n,floor(n/2)) gives A306267.
A(n+2,n) gives A001564.
Cf. A130152.

Programs

  • Mathematica
    A[0, _] = 1;
    A[n_ /; n > 0, k_] := A[n, k] = Permanent[Table[If[Abs[i - j] <= k, 1, 0], {i, 1, n}, {j, 1, n}]];
    Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1 }] // Flatten (* Jean-François Alcover, Oct 18 2021, after Alois P. Heinz in A130152 *)

Formula

A(n,k) = Sum_{j=0..k} A130152(n,j) for n > 0, A(0,k) = 1.

A001688 4th forward differences of factorial numbers A000142.

Original entry on oeis.org

9, 53, 362, 2790, 24024, 229080, 2399760, 27422640, 339696000, 4536362880, 64988179200, 994447238400, 16190733081600, 279499828608000, 5100017213491200, 98087346669312000, 1983334021853184000, 42063950934061056000, 933754193111900160000
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[(n^4 + 6*n^3 + 17*n^2 + 20*n + 9) n!, {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
    Differences[Range[0,30]!,4] (* Harvey P. Dale, Jun 06 2017 *)
  • PARI
    a(n)=if(n<0,0,n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9))

Formula

For n>=0 a(n) = n!*(n^4 + 6*n^3 + 17*n^2 + 20*n + 9). - Benoit Cloitre, Jun 10 2004
G.f.: -log(-x+1)+1+2/(x-1)^4*x*(4-3*x+2*x^2). - Simon Plouffe, Master's Thesis, Uqam 1992
E.g.f.: (9 + 8*x + 6*x^2 + x^4)/(1 - x)^5. - Ilya Gutkovskiy, Jan 20 2017
a(n) = (n+5)*a(n-1) - (n-1)*a(n-2) with a(0) = 9 and a(1) = 53. Cf. A095177. - Peter Bala, Jul 22 2021

A001689 5th forward differences of factorial numbers A000142.

Original entry on oeis.org

44, 309, 2428, 21234, 205056, 2170680, 25022880, 312273360, 4196666880, 60451816320, 929459059200, 15196285843200, 263309095526400, 4820517384883200, 92987329455820800, 1885246675183872000, 40080616912207872000, 891690242177839104000
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Differences[Table[n!, {n, 0, 25}], 5] (* T. D. Noe, Aug 09 2012 *)

Formula

a(n) = (n^5 + 10*n^4 + 45*n^3 + 100*n^2 + 109*n + 44)*n! - Mitch Harris, Jul 10 2008
E.g.f.: (44 + 45*x + 20*x^2 + 10*x^3 + x^5)/(1 - x)^6. - Ilya Gutkovskiy, Jan 20 2017
a(n) = (n+6)*a(n-1) - (n-1)*a(n-2) with a(0) = 44 and a(1) = 309. Cf. A096307. - Peter Bala, Jul 22 2021

A094793 a(n) = (1/n!)*A001688(n).

Original entry on oeis.org

9, 53, 181, 465, 1001, 1909, 3333, 5441, 8425, 12501, 17909, 24913, 33801, 44885, 58501, 75009, 94793, 118261, 145845, 178001, 215209, 257973, 306821, 362305, 425001, 495509, 574453, 662481, 760265, 868501, 987909, 1119233, 1263241
Offset: 0

Views

Author

Benoit Cloitre, Jun 11 2004

Keywords

Comments

Number of injections from {1,2,3,4} to {1,2,...,n} with no fixed points. - Fiona T. Brunk (fbrunk(AT)mcs.st-and.ac.uk), May 23 2006
In general (cf. A094792, A094794, A094795, etc.), the number of injections [k] -> [n] with no fixed points is given by Sum_{i=0..k} (-1)^i*binomial(k,i)*(n-i)!/(n-k)!, which is equal to (1/n!)*f_k(n) where f_k(n) gives the k-th differences of factorial numbers. - Fiona T. Brunk (fbrunk(AT)mcs.st-and.ac.uk), May 23 2006

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{9,53,181,465,1001},40] (* Harvey P. Dale, May 23 2016 *)

Formula

a(n) = n^4 + 6*n^3 + 17*n^2 + 20*n + 9.
a(n) = Sum_{i=0..4} (-1)^i*binomial(4,i)*(n-i)!/(n-4)!. - Fiona T. Brunk (fbrunk(AT)mcs.st-and.ac.uk), May 23 2006
G.f.: -(x^4+6*x^2+8*x+9) / (x-1)^5. - Colin Barker, Jun 16 2013
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Fung Lam, Apr 17 2014
P-recursive: n*a(n) = (n+5)*a(n-1) - a(n-2) with a(0) = 9 and a(1) = 53. Cf. A094791. - Peter Bala, Jul 25 2021
Showing 1-10 of 26 results. Next