cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David M. Cerna

David M. Cerna's wiki page.

David M. Cerna has authored 2 sequences.

A294082 Square array read by antidiagonals: T(m,n) = T(m,n-1)^2 - T(m,n-2)^2 + T(m,n-2) with T(1,n) = 1, T(m,0) = 1, and T(m,1) = m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 14, 9, 4, 1, 1, 184, 75, 16, 5, 1, 1, 33674, 5553, 244, 25, 6, 1, 1, 1133904604, 30830259, 59296, 605, 36, 7, 1, 1, 1285739649838492214, 950504839176825, 3515956324, 365425, 1266, 49, 8, 1
Offset: 1

Author

David M. Cerna, Feb 09 2018

Keywords

Comments

The columns of T(n,m) enumerate the size of the set S(n) constructed recursively as follows: Let S(1) = {a_1, ..., a_m}, where a_i are arbitrary elements, and let P(S) be the set of pairs (s,t) where s,t are members of S and s is not equal to t. We define S(n+1) to be the union of S(n) and P(S(n)). For example Let S(1) = {a_1,a_2}, then S(2) = {a_1,a_2, (a_1,a_2),(a_2,a_1)} where (a_1,a_2) is the pairing of a_{1} and a_{2}. Furthermore S(2) = {a_1,a_2, (a_1,a_2),(a_2,a_1), (a_1,(a_1,a_2)), (a_1,(a_2,a_1)), ((a_1,a_2),a_1), ((a_2,a_1),a_1), (a_2,(a_1,a_2)), (a_2,(a_2,a_1)), ((a_1,a_2),a_2), ((a_2,a_1),a_2)((a_1,a_2), (a_2,a_1)) }.

Examples

			Array begins:
=============================================================================
m\n| 0  1   2     3         4                5                              6
---|-------------------------------------------------------------------------
1  | 1  1   1     1         1                1                              1
2  | 1  2   4    14       184            33674                     1133904604
3  | 1  3   9    75      5553         30830259                950504839176825
4  | 1  4  16   244     59296       3515956324           12361948868759636656
5  | 1  5  25   605    365425     133535065205        17831613639170066626825
6  | 1  6  36  1266   1601496    2564787836526      6578136646389154911912156
7  | 1  7  49  2359   5562529   30941723313319    957390241597957573719482449
8  | 1  8  64  4040  16317568  266263009117064  70895990024073440521846863040
  ...
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] := t[n -1, m]^2 - t[n -2, m]^2 + t[n -2, m]; t[0, m_] := 1; t[1, m_] := m; Table[ t[n -m +1, m], {n, 0, 8}, {m, n +1}] // Flatten
    (* to produce the table *) Table[t[n, m], {m, 8}, {n, 0, 6}] // TableForm (* Robert G. Wilson v, Feb 09 2018 *)
  • PARI
    T(n, k) = if (k<0, 0, if (n==1, 1, if (k==0, 1, if (k==1, n, T(n, k-1)^2 - T(n, k-2)^2 + T(n, k-2)))));
    tabl(nn) = for (n=1, nn , for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 06 2018

A244148 The number of ways one can assign values to n arrays a_{1},...,a_{n} of increasing size (size of a_{1} is 1, size of a_{2} is 2, ..., size of a_{n} is n) using the numbers 1, ..., n*(n+1)/2, distinctly, such that the positions of array a_{i} can only be assigned values in the interval ((n+1)-i),... , (n*(n+1)/2-(n-i)).

Original entry on oeis.org

1, 2, 72, 115200, 13276569600, 165253252792320000, 312379127174190543667200000, 120053472861445542607502662277529600000, 12098873398276702490569569159619238449643520000000000, 400639807706466477973460949403651522366500906696560470917120000000000
Offset: 1

Author

David M. Cerna, Jun 21 2014

Keywords

Comments

This sequence provides an upper bound for the following sequence: the number of ways one can assign values to n arrays a_{1},...,a_{n} of increasing size (size of a_{1} is 1, size of a_{2} is 2, ..., size of a_{n} is n) using the numbers 1, ..., n*(n+1)/2, distinctly, such that for the j^th position of array a_{i} (a_{i}(j)) one of the follow holds, a_{i+1}(j+1) < a_{i}(j) < a_{i+1}(j) or a_{i+1}(j) < a_{i}(j) < a_{i+1}(j+1). Currently, there is no formula known for enumerating this sequence.

Programs

  • PARI
    a(n)=prod(k=1,n,k!* binomial((n^2 - 3*n + 5*k - k^2)/2 , k)); \\ Joerg Arndt, Jun 22 2014

Formula

a(n) = Prod_{k=1..n} (k!* binomial((n^2 - 3*n + 5*k - k^2)/2 , k)).