A294082 Square array read by antidiagonals: T(m,n) = T(m,n-1)^2 - T(m,n-2)^2 + T(m,n-2) with T(1,n) = 1, T(m,0) = 1, and T(m,1) = m.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 14, 9, 4, 1, 1, 184, 75, 16, 5, 1, 1, 33674, 5553, 244, 25, 6, 1, 1, 1133904604, 30830259, 59296, 605, 36, 7, 1, 1, 1285739649838492214, 950504839176825, 3515956324, 365425, 1266, 49, 8, 1
Offset: 1
Examples
Array begins: ============================================================================= m\n| 0 1 2 3 4 5 6 ---|------------------------------------------------------------------------- 1 | 1 1 1 1 1 1 1 2 | 1 2 4 14 184 33674 1133904604 3 | 1 3 9 75 5553 30830259 950504839176825 4 | 1 4 16 244 59296 3515956324 12361948868759636656 5 | 1 5 25 605 365425 133535065205 17831613639170066626825 6 | 1 6 36 1266 1601496 2564787836526 6578136646389154911912156 7 | 1 7 49 2359 5562529 30941723313319 957390241597957573719482449 8 | 1 8 64 4040 16317568 266263009117064 70895990024073440521846863040 ...
Programs
-
Mathematica
t[n_, m_] := t[n -1, m]^2 - t[n -2, m]^2 + t[n -2, m]; t[0, m_] := 1; t[1, m_] := m; Table[ t[n -m +1, m], {n, 0, 8}, {m, n +1}] // Flatten (* to produce the table *) Table[t[n, m], {m, 8}, {n, 0, 6}] // TableForm (* Robert G. Wilson v, Feb 09 2018 *)
-
PARI
T(n, k) = if (k<0, 0, if (n==1, 1, if (k==0, 1, if (k==1, n, T(n, k-1)^2 - T(n, k-2)^2 + T(n, k-2))))); tabl(nn) = for (n=1, nn , for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 06 2018
Comments