A010034 Numbers k such that gcd(k^17 + 9, (k+1)^17 + 9) > 1.
8424432925592889329288197322308900672459420460792433, 17361015163508605989239159575667846308252873717727992, 26297597401424322649190121829026791944046326974663551, 35234179639340039309141084082385737579839780231599110
Offset: 1
Links
- M. F. Hasler, Table of n, a(n) for n = 1..100
- Tanya Khovanova, Recursive Sequences
- Stan Wagon, Macalester College Problem of the week # 805, MacPOW archive on MathForum.org. Spring 1996.
- Péter E. Frenkel, József Pelikán, On the greatest common divisor of the value of two polynomials, Amer. Math. Monthly 124:5 (2017), 446-450. arXiv:1608.07936 [math.NT]
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
Table[8424432925592889329288197322308900672459420460792433+ 8936582237915716659950962253358945635793453256935559(n-1),{n,5}] (* or *) LinearRecurrence[{2,-1},{8424432925592889329288197322308900672459420460792433,17361015163508605989239159575667846308252873717727992},5] (* Harvey P. Dale, Jun 12 2014 *)
-
PARI
A010034(n)=8936582237915716659950962253358945635793453256935559*n-512149312322827330662764931050044963334032796143126 \\ M. F. Hasler, Mar 17 2015
-
PARI
\\ The values (a(1),p) can also be found using: {p=polresultant(x^17+9,(x+1)^17+9);s=vector(2,i,Mod(-9,p)^(1/17));(u=s[2]/s[1])!=1&&until(setsearch(Set(s=concat(s,s[#s]*u)),s[#s]+1),)} \\ Then the last element s[#s] equals Mod(a(1),p). - M. F. Hasler, Mar 26 2015
Formula
a(n) = 8424432925592889329288197322308900672459420460792433 + 8936582237915716659950962253358945635793453256935559*(n-1). - Max Alekseyev, Jul 26 2009
a(1) = A255859(17). - M. F. Hasler, Mar 17 2015
Extensions
More terms from Max Alekseyev, Jul 26 2009
Comments