cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010056 Characteristic function of Fibonacci numbers: a(n) = 1 if n is a Fibonacci number, otherwise 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Understood as a binary number, Sum_{k>=0} a(k)/2^k, the resulting decimal expansion is 1.910278797207865891... = Fibonacci_binary+0.5 (see A084119) or Fibonacci_binary_constant-0.5 (see A124091), respectively. - Hieronymus Fischer, May 14 2007
a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=25*x^4-10*m^2*x^2+m^4-16. Also a(n)=1 iff floor(s)<>floor(c) or ceiling(s)<>ceiling(c) where s=arcsinh(sqrt(5)*n/2)/log(phi), c=arccosh(sqrt(5)*n/2)/log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, May 17 2007
a(A000045(n)) = 1; a(A001690(n)) = 0. - Reinhard Zumkeller, Oct 10 2013
Image, under the map sending a,b,c -> 1, d,e,f -> 0, of the fixed point, starting with a, of the morphism sending a -> ab, b -> c, c -> cd, d -> d, e -> ef, f -> e. - Jeffrey Shallit, May 14 2016

Crossrefs

Decimal expansion of Fibonacci binary is in A084119.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Cf. A079586 (Dirich. g.f. at s=1).

Programs

  • Haskell
    import Data.List (genericIndex)
    a010056 = genericIndex a010056_list
    a010056_list = 1 : 1 : ch [2..] (drop 3 a000045_list) where
       ch (x:xs) fs'@(f:fs) = if x == f then 1 : ch xs fs else 0 : ch xs fs'
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Maple
    a:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
    seq(a(n), n=0..144);  # Alois P. Heinz, Dec 06 2020
  • Mathematica
    Join[{1},With[{fibs=Fibonacci[Range[15]]},If[MemberQ[fibs,#],1,0]& /@Range[100]]]  (* Harvey P. Dale, May 02 2011 *)
  • PARI
    a(n)=my(k=n^2);k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) \\ Charles R Greathouse IV, Jul 30 2012
    
  • Python
    from sympy.ntheory.primetest import is_square
    def A010056(n): return int(is_square(m:=5*n**2-4) or is_square(m+8)) # Chai Wah Wu, Mar 30 2023

Formula

G.f.: (Sum_{k>=0} x^A000045(k)) - x. - Hieronymus Fischer, May 17 2007