cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010073 a(n) = sum of base-6 digits of a(n-1) + sum of base-6 digits of a(n-2); a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 8, 6, 4, 5, 9, 9, 8, 7, 5, 7, 7, 4, 6, 5, 6, 6, 2, 3, 5, 8, 8, 6, 4, 5, 9, 9, 8, 7, 5, 7, 7, 4, 6, 5, 6, 6, 2, 3, 5, 8, 8, 6, 4, 5, 9, 9, 8, 7, 5, 7, 7, 4, 6, 5, 6, 6, 2, 3, 5, 8, 8, 6, 4, 5, 9, 9, 8, 7, 5, 7, 7, 4, 6, 5, 6, 6
Offset: 0

Views

Author

Keywords

Comments

The digital sum analog (in base 6) of the Fibonacci recurrence. - Hieronymus Fischer, Jun 27 2007
For general bases p > 2, we have the inequality 2 <= a(n) <= 2p-3 (for n > 2). Actually, a(n) <= 9 = A131319(6) for the base p=6. - Hieronymus Fischer, Jun 27 2007
a(n) and Fibonacci(n)=A000045(n) are congruent modulo 5 which implies that (a(n) mod 5) is equal to (Fibonacci(n) mod 5) = A082116(n) (for n > 0). Thus (a(n) mod 6) is periodic with the Pisano period A001175(5)=20. - Hieronymus Fischer, Jun 27 2007

Crossrefs

Programs

  • Magma
    [0] cat [n le 2 select 1 else Self(n-1)+Self(n-2)-5*((Self(n-1) div 6)+(Self(n-2) div 6)): n in [1..100]]; // Vincenzo Librandi, Jul 11 2015
    
  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,Total[IntegerDigits[c,6]]+Total[ IntegerDigits[ b,6]]}; Transpose[NestList[nxt,{0,1,1},90]][[1]] (* Harvey P. Dale, Oct 09 2014 *)
  • PARI
    lista(nn) = {va = vector(nn); va[2] = 1; for (n=3, nn, va[n] = sumdigits(va[n-1], 6) + sumdigits(va[n-2], 6);); va;} \\ Michel Marcus, Apr 24 2018

Formula

Periodic from n=3 with period 20. - Franklin T. Adams-Watters, Mar 13 2006
a(n) = a(n-1) + a(n-2) - 5*(floor(a(n-1)/6) + floor(a(n-2)/6)). - Hieronymus Fischer, Jun 27 2007
a(n) = floor(a(n-1)/6) + floor(a(n-2)/6) + (a(n-1) mod 6) + (a(n-2) mod 6). - Hieronymus Fischer, Jun 27 2007
a(n) = (a(n-1) + a(n-2) + 5*(A010875(a(n-1)) + A010875(a(n-2))))/6. - Hieronymus Fischer, Jun 27 2007
a(n) = Fibonacci(n) - 5*Sum_{k=2..n-1} Fibonacci(n-k+1)*floor(a(k)/6). - Hieronymus Fischer, Jun 27 2007

Extensions

Incorrect comment removed by Michel Marcus, Apr 28 2018