cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010134 Continued fraction for sqrt(43).

Original entry on oeis.org

6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3
Offset: 0

Views

Author

Keywords

Examples

			6.557438524302000652344109997... = 6 + 1/(1 + 1/(1 + 1/(3 + 1/(1 + ...)))) - _Harry J. Smith_, Jun 05 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010497 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[43],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 16000); x=contfrac(sqrt(43)); for (n=0, 20000, write("b010134.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 05 2009
    
  • PARI
    Vec((6*x^10+x^9+x^8+3*x^7+x^6+5*x^5+x^4+3*x^3+x^2+x+6)/(-x^10+1) + O(x^100)) \\ Colin Barker, Nov 01 2013

Formula

From Colin Barker, Nov 01 2013: (Start)
G.f.: (6*x^10+x^9+x^8+3*x^7+x^6+5*x^5+x^4+3*x^3+x^2+x+6)/(1-x^10).
a(n) = a(n-10) for n>10. (End)