A010134 Continued fraction for sqrt(43).
6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12, 1, 1, 3, 1, 5, 1, 3
Offset: 0
Examples
6.557438524302000652344109997... = 6 + 1/(1 + 1/(1 + 1/(3 + 1/(1 + ...)))) - _Harry J. Smith_, Jun 05 2009
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Les Tablettes du Chercheur, Problem 364, pp. 11, Mai 15 1891
- G. Xiao, Contfrac
- Index entries for continued fractions for constants
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).
Crossrefs
Cf. A010497 (decimal expansion).
Programs
-
Mathematica
ContinuedFraction[Sqrt[43],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
-
PARI
{ allocatemem(932245000); default(realprecision, 16000); x=contfrac(sqrt(43)); for (n=0, 20000, write("b010134.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 05 2009
-
PARI
Vec((6*x^10+x^9+x^8+3*x^7+x^6+5*x^5+x^4+3*x^3+x^2+x+6)/(-x^10+1) + O(x^100)) \\ Colin Barker, Nov 01 2013
Formula
From Colin Barker, Nov 01 2013: (Start)
G.f.: (6*x^10+x^9+x^8+3*x^7+x^6+5*x^5+x^4+3*x^3+x^2+x+6)/(1-x^10).
a(n) = a(n-10) for n>10. (End)