A010553 a(n) = tau(tau(n)).
1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 2, 3, 3, 4, 2, 4, 2, 4, 3, 3, 3, 3, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 3, 2, 6, 2, 3, 4, 2, 3, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 4, 3, 4, 2, 4, 2
Offset: 1
References
- S. Ramanujan, Highly composite numbers. Proc. London Math. Soc., series 2, 14 (1915), 347-409. Republished in Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 78-128.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..10000 (first 2000 terms from Enrique Pérez Herrero)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- R. Bellman and H. N. Shapiro, On a problem in additive number theory, Annals Math., 49 (1948), 333-340. See Eq. 1.5.
- Yvonne Buttkewitz, Christian Elsholtz, Kevin Ford, Jan-Christoph Schlage-Puchta, A problem of Ramanujan, Erdos and Katai on the iterated divisor function, arXiv:1108.1815 [math.NT], Aug 08 2011.
Programs
-
Maple
with(numtheory): f := n->tau(tau(n));
-
Mathematica
Table[Nest[DivisorSigma[0, #] &, n, 2], {n, 81}] (* Michael De Vlieger, Dec 24 2015 *)
-
PARI
A010553(n)=numdiv(numdiv(n)); \\ Enrique Pérez Herrero, Jul 13 2010
Formula
a(n) = A000005(A000005(n)). a(1) = 1, a(p) = 2 for p = primes (A000040), a(pq) = 3 for pq = product of two distinct primes (A006881), a(pq...z) = k + 1 for pq...z = product of k (k > 2) distinct primes p,q,...,z (A120944), a(p^k) = A000005(k+1) for p^k = prime powers (A000961(n) for n > 1), k = natural numbers (A000027). - Jaroslav Krizek, Jul 17 2009
Asymptotically, Max_{i<=n} log(tau(tau(i))) = sqrt(log(n))/log_2(n) * (c + O(log_3(n)/log_2(n)) where c = 8*Sum_{j>=1} log^2 (1 + 1/j)) ~ 2.7959802335... [Buttkewitz et al.].
Comments