cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143983 Triangle T(n,k), n>=1, 1<=k<=n, read by rows, where sequence a_k of column k has a_k(0)=1, followed by (k-1)-fold 0 and a_k(n) shifts k places down under binomial transform.

Original entry on oeis.org

1, 2, 1, 5, 1, 1, 15, 2, 1, 1, 52, 5, 1, 1, 1, 203, 13, 2, 1, 1, 1, 877, 36, 6, 1, 1, 1, 1, 4140, 109, 17, 2, 1, 1, 1, 1, 21147, 359, 44, 7, 1, 1, 1, 1, 1, 115975, 1266, 112, 23, 2, 1, 1, 1, 1, 1, 678570, 4731, 304, 65, 8, 1, 1, 1, 1, 1, 1, 4213597, 18657, 918, 165, 30, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 06 2008

Keywords

Comments

The matrix inverse starts:
1;
-2, 1;
-3, -1, 1;
-8, -1, -1, 1;
-31, -3, 0, -1, 1;
-132, -7, -1, 0, -1, 1;
-616, -19, -4, 0, 0, -1, 1; - R. J. Mathar, Mar 22 2013

Examples

			T(5,2) = 5, because [1,3,3,1] * [1,0,1,1] = 5.
Triangle begins:
:      1;
:      2,    1;
:      5,    1,   1;
:     15,    2,   1,  1;
:     52,    5,   1,  1, 1;
:    203,   13,   2,  1, 1, 1;
:    877,   36,   6,  1, 1, 1, 1;
:   4140,  109,  17,  2, 1, 1, 1, 1;
:  21147,  359,  44,  7, 1, 1, 1, 1, 1;
: 115975, 1266, 112, 23, 2, 1, 1, 1, 1, 1;
		

Crossrefs

Columns 1-6 give: A000110, A000994, A000996, A010748, A010749, A010750.
Cf. A007318.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n
    				
  • Mathematica
    t[n_, k_] := t[n, k] = If[n < k, If[n == 0, 1, 0], Sum[Binomial[n-k, j]*t[j, k], {j, 0, n-k}]]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 13}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

Formula

T(n,k) = Sum_{j=0..n-k} C(n-k,j)*T(j,k) if n>=k, else T(n,k) = 1 if n=1, else T(n,k) = 0.

A351343 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x/(1 - 2*x)) / (1 - 2*x).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 9, 27, 81, 245, 761, 2493, 8849, 34519, 147057, 670327, 3198561, 15732905, 79174929, 407127897, 2145061729, 11635963499, 65309080185, 380583443187, 2304629301041, 14475031232285, 93943897651017, 627220447621973, 4290783719133041, 29988917377046207
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2022

Keywords

Comments

Shifts 4 places left under 2nd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 29; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = If[n < 4, 1, Sum[Binomial[n - 4, k] 2^k a[n - k - 4], {k, 0, n - 4}]]; Table[a[n], {n, 0, 29}]

Formula

a(0) = ... = a(3) = 1; a(n) = Sum_{k=0..n-4} binomial(n-4,k) * 2^k * a(n-k-4).
Showing 1-2 of 2 results.