A000994
Shifts 2 places left under binomial transform.
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, 18657, 77464, 337681, 1540381, 7330418, 36301105, 186688845, 995293580, 5491595645, 31310124067, 184199228226, 1116717966103, 6968515690273, 44710457783760, 294655920067105, 1992750830574681, 13817968813639426
Offset: 0
A(x) = 1 + x^2/(1-x) + x^4/((1-x)^2*(1-2x)) + x^6/((1-x)^2*(1-2x)^2*(1-3x)) +...
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..650 (first 101 terms from T. D. Noe)
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- N. J. A. Sloane, Transforms
- S. Tauber, On generalizations of the exponential function, Amer. Math. Monthly, 67 (1960), 763-767.
-
a000994 n = a000994_list !! n
a000994_list = 1 : 0 : us where
us = 1 : 1 : f 2 where
f x = (1 + sum (zipWith (*) (map (a007318' x) [2..x]) us)) : f (x + 1)
-- Reinhard Zumkeller, Jun 02 2013
-
A000994 := proc(n) local k; option remember; if n <= 1 then 1 else 1 + add(binomial(n, k)*A000994(k - 2), k = 2 .. n); fi; end;
-
a[n_] := a[n] = 1 + Sum[Binomial[n, k]*a[k-2], {k, 2, n}]; Join[{1, 0}, Table[a[n], {n, 0, 24}]] (* Jean-François Alcover, Oct 11 2011, after Maple *)
-
a(n)=polcoeff(sum(k=0, n, x^(2*k)*(1-k*x)/prod(j=0, k, 1-j*x+x*O(x^n))^2), n) \\ Paul D. Hanna, Nov 02 2006
A000996
Shifts 3 places left under binomial transform.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 2, 6, 17, 44, 112, 304, 918, 3040, 10623, 38161, 140074, 528594, 2068751, 8436893, 35813251, 157448068, 713084042, 3315414747, 15805117878, 77273097114, 387692392570, 1996280632656, 10542604575130, 57034787751655, 315649657181821
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- S. Tauber, On generalizations of the exponential function, Amer. Math. Monthly, 67 (1960), 763-767.
-
a:= proc(n) option remember; local k; if n<=2 then [1,0,0][n+1] else 1+ add(binomial(n-3,k) *a(k), k=3..n-3) fi end: seq(a(n), n=0..29); # Alois P. Heinz, Sep 05 2008
-
a[n_] := a[n] = If[n <= 2 , {1, 0, 0}[[n+1]], 1+Sum [Binomial[n-3, k]*a[k], {k, 3, n-3}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
A010748
Shifts 4 places right under inverse binomial transform.
Original entry on oeis.org
1, 1, 1, 1, 2, 7, 23, 65, 165, 398, 976, 2618, 7997, 27205, 97705, 355631, 1289746, 4662069, 16971775, 63150385, 243513801, 980670052, 4121324752, 17941655332, 80143362633, 364476958473, 1680382664145, 7847729640629, 37192941056498, 179431901258459
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
Column k=4 of
A143983 (using a different offset).
-
T:= proc(n,k) option remember; local j; if n T(n+4,4): seq(a(n), n=0..30); # Alois P. Heinz, Sep 05 2008
-
T[n_, k_] := T[n, k] = If[nJean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
A010749
Shifts 5 places right under inverse binomial transform.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 8, 30, 94, 257, 640, 1505, 3482, 8402, 22660, 70825, 248912, 924764, 3465758, 12813670, 46470377, 165908866, 588617326, 2103688426, 7696710691, 29266242303, 116732304039, 488414436671, 2126002398180, 9511898145938, 43251315994457
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
Column k=5 of
A143983 (using a different offset).
-
T:= proc(n,k) option remember; local j; if n T(n+5,5): seq(a(n), n=0..32); # Alois P. Heinz, Sep 05 2008
-
T[n_, k_] := T[n, k] = If[nJean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
A010750
Shifts 6 places right under inverse binomial transform.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 9, 38, 131, 387, 1025, 2512, 5834, 13152, 29805, 71858, 197325, 635938, 2311865, 8867078, 34201676, 129669923, 479650565, 1731405819, 6124746296, 21382533684, 74413732788, 261584276096, 943601869926, 3547521313455, 14045005473985
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
-
T:= proc(n, k) option remember; `if`(n T(n+6, 6): seq(a(n), n=0..30); # Alois P. Heinz, Sep 05 2008
-
T[n_, k_] := T[n, k] = If[n < k, If[n == 0, 1, 0], Sum[Binomial[n-k, j]*T[j, k], {j, 0, n-k}]]; a[n_] := T[n+6, 6]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Apr 17 2014, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments