cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A009963 Triangle of numbers n!(n-1)!...(n-k+1)!/(1!2!...k!).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 24, 72, 24, 1, 1, 120, 1440, 1440, 120, 1, 1, 720, 43200, 172800, 43200, 720, 1, 1, 5040, 1814400, 36288000, 36288000, 1814400, 5040, 1, 1, 40320, 101606400, 12192768000, 60963840000, 12192768000, 101606400, 40320, 1
Offset: 0

Views

Author

Keywords

Comments

Product of all matrix elements of n X k matrix M(i,j) = i+j (i=1..n-k, j=1..k). - Peter Luschny, Nov 26 2012
These are the generalized binomial coefficients associated to the sequence A000178. - Tom Edgar, Feb 13 2014

Examples

			Rows start:
  1;
  1,   1;
  1,   2,    1;
  1,   6,    6,    1;
  1,  24,   72,   24,   1;
  1, 120, 1440, 1440, 120, 1;  etc.
		

Crossrefs

Central column is A079478.
Columns include A010796, A010797, A010798, A010799, A010800.
Row sums give A193520.

Programs

  • Magma
    A009963:= func< n,k | (1/Factorial(n+1))*(&*[ Factorial(n-j+1)/Factorial(j): j in [0..k]]) >;
    [A009963(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 04 2022
  • Mathematica
    (* First program *)
    row[n_]:= Table[Product[i+j, {i,1,n-k}, {j,1,k}], {k,0,n}];
    Array[row, 9, 0] // Flatten (* Jean-François Alcover, Jun 01 2019, after Peter Luschny *)
    (* Second program *)
    T[n_, k_]:= BarnesG[n+2]/(BarnesG[k+2]*BarnesG[n-k+2]);
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 04 2022 *)
  • Sage
    def A009963_row(n):
        return [mul(mul(i+j for j in (1..k)) for i in (1..n-k)) for k in (0..n)]
    for n in (0..7): A009963_row(n)  # Peter Luschny, Nov 26 2012
    
  • Sage
    def triangle_to_n_rows(n): #changing n will give you the triangle to row n.
        N=[[1]+n*[0]]
        for i in [1..n]:
            N.append([])
            for j in [0..n]:
                if i>=j:
                    N[i].append(factorial(i-j)*binomial(i-1,j-1)*N[i-1][j-1]+factorial(j)*binomial(i-1,j)*N[i-1][j])
                else:
                    N[i].append(0)
        return [[N[i][j] for j in [0..i]] for i in [0..n]]
        # Tom Edgar, Feb 13 2014
    

Formula

T(n,k) = T(n-1,k-1)*A008279(n,n-k) = A000178(n)/(A000178(k)*A000178(n-k)) i.e., a "supercombination" of "superfactorials". - Henry Bottomley, May 22 2002
Equals ConvOffsStoT transform of the factorials starting (1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 2, 6, 24) = (1, 24, 72, 24, 1). Note that A090441 = ConvOffsStoT transform of the factorials, A000142. - Gary W. Adamson, Apr 21 2008
Asymptotic: T(n,k) ~ exp((3/2)*k^2 - zeta'(-1) + 3/4 - (3/2)*n*k)*(1+n)^((1/2)*n^2 + n + 5/12)*(1+k)^(-(1/2)*k^2 - k - 5/12)*(1 + n - k)^(-(1/2)*n^2 + n*k - (1/2)*k^2 - n + k - 5/12)/(sqrt(2*Pi). - Peter Luschny, Nov 26 2012
T(n,k) = (n-k)!*C(n-1,k-1)*T(n-1,k-1) + k!*C(n-1,k)*T(n-1,k) where C(i,j) is given by A007318. - Tom Edgar, Feb 13 2014
T(n,k) = Product_{i=1..k} (n+1-i)!/i!. - Alois P. Heinz, Jun 07 2017
T(n,k) = BarnesG(n+2)/(BarnesG(k+2)*BarnesG(n-k+2)). - G. C. Greubel, Jan 04 2022
Showing 1-1 of 1 results.