A010810 22nd powers: a(n) = n^22.
0, 1, 4194304, 31381059609, 17592186044416, 2384185791015625, 131621703842267136, 3909821048582988049, 73786976294838206464, 984770902183611232881, 10000000000000000000000, 81402749386839761113321
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).
Programs
-
Magma
[n^22: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
-
Mathematica
Table[n^20, {n, 0, 22}] (* Amiram Eldar, Oct 09 2020 *)
-
PARI
a(n) = n^22; \\ Michel Marcus, Feb 27 2018
Formula
Totally multiplicative sequence with a(p) = p^22 for prime p. Multiplicative sequence with a(p^e) = p^(22e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-22).
Sum_{n>=1} 1/a(n) = zeta(22) = 155366*Pi^22/13447856940643125.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2097151*zeta(22)/2097152 = 3324754717*Pi^22/287777551824322560000. (End)