A010813 25th powers: a(n) = n^25.
0, 1, 33554432, 847288609443, 1125899906842624, 298023223876953125, 28430288029929701376, 1341068619663964900807, 37778931862957161709568, 717897987691852588770249, 10000000000000000000000000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (26, -325, 2600, -14950, 65780, -230230, 657800, -1562275, 3124550, -5311735, 7726160, -9657700, 10400600, -9657700, 7726160, -5311735, 3124550, -1562275, 657800, -230230, 65780, -14950, 2600, -325, 26, -1).
Programs
-
Magma
[n^25: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
-
Mathematica
Range[0, 9]^25 (* Alonso del Arte, Apr 04 2015 *)
-
PARI
a(n)=n^25 \\ Charles R Greathouse IV, Jun 28 2015
Formula
Completely multiplicative sequence with a(p) = p^25 for prime p. Multiplicative sequence with a(p^e) = p^(25e). - Jaroslav Krizek, Nov 01 2009
From Amiram Eldar, Oct 09 2020: (Start)
Dirichlet g.f.: zeta(s-25).
Sum_{n>=1} 1/a(n) = zeta(25).
Sum_{n>=1} (-1)^(n+1)/a(n) = 16777215*zeta(25)/16777216. (End)