cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010846 Number of numbers <= n whose set of prime factors is a subset of the set of prime factors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 6, 2, 8, 2, 6, 5, 5, 2, 10, 2, 8, 5, 7, 2, 11, 3, 7, 4, 8, 2, 18, 2, 6, 6, 8, 5, 14, 2, 8, 6, 11, 2, 19, 2, 9, 8, 8, 2, 15, 3, 12, 6, 9, 2, 16, 5, 11, 6, 8, 2, 26, 2, 8, 8, 7, 5, 22, 2, 10, 6, 20, 2, 18, 2, 9, 9, 10, 5, 23, 2, 14, 5, 9, 2, 28, 5, 9, 7, 11, 2, 32, 5, 10
Offset: 1

Views

Author

Keywords

Comments

This function of n appears in an ABC-conjecture by Andrew Granville. See Goldfeld. - T. D. Noe, Jun 30 2009

Examples

			From _Wolfdieter Lang_, Jun 30 2014: (Start)
a(1) = 1 because the empty set is a subset of any set.
a(6) = 5 from the five numbers: 1 with the empty set, 2 with the set {2}, 3 with {3}, 4 with {2} and 6 with {2,3}, which are all subsets of {2,3}. 5 is out because {5} is not a subset of {2,3}. (End)
From _David A. Corneth_, Feb 10 2015: (Start)
Let p# be the product of primes up to p, A002110. Then,
a(13#) = 1161
a(17#) = 4843
a(19#) = 19985
a(23#) = 83074
a(29#) = 349670
a(31#) = 1456458
a(37#) = 6107257
a(41#) = 25547835
(End)
		

Crossrefs

Cf. A162306 (numbers for each n).

Programs

  • Maple
    A:= proc(n) local F, S, s,j,p;
      F:= numtheory:-factorset(n);
      S:= {1};
      for p in F do
        S:= {seq(seq(s*p^j, j=0..floor(log[p](n/s))),s=S)}
      od;
      nops(S)
    end proc;
    seq(A(n),n=1..1000); # Robert Israel, Jun 27 2014
  • Mathematica
    pf[n_] := If[n==1, {}, Transpose[FactorInteger[n]][[1]]]; SubsetQ[lst1_, lst2_] := Intersection[lst1,lst2]==lst1; Table[pfn=pf[n]; Length[Select[Range[n], SubsetQ[pf[ # ],pfn] &]], {n,100}] (* T. D. Noe, Jun 30 2009 *)
    Table[Total[MoebiusMu[#] Floor[n/#] &@ Select[Range@ n, CoprimeQ[#, n] &]], {n, 92}] (* Michael De Vlieger, May 08 2016 *)
  • PARI
    a(n,f=factor(n)[,1])=if(#f>1,my(v=f[1..#f-1],p=f[#f],s); while(n>0, s+=a(n,v); n\=p); s, if(#f&&n>0,log(n+.5)\log(f[1])+1,n>0)) \\ Charles R Greathouse IV, Jun 27 2013
    
  • PARI
    a(n) = sum(k=1,n,if(gcd(n,k)-1,0,moebius(k)*(n\k))) \\ Benoit Cloitre, May 07 2016
    
  • PARI
    a(n,f=factor(n)[,1])=if(#f<2, return(if(#f, valuation(n,f[1])+1, 0))); my(v=f[1..#f-1],p=f[#f],s); while(n, s+=a(n,v); n\=p); s \\ Charles R Greathouse IV, Nov 03 2021
    
  • Python
    def A010846(n): return sum((m:=n**k)//k-(m-1)//k for k in range(1,n+1)) # Chai Wah Wu, Aug 15 2024
    
  • Python
    from math import gcd
    from sympy import mobius
    def A010846(n): return sum(mobius(k)*(n//k) for k in range(1,n+1) if gcd(n,k)==1) # Chai Wah Wu, Apr 23 2025

Formula

a(n) = |{k<=n, k|n^(tau(k)-1)}|. - Vladeta Jovovic, Sep 13 2006
a(n) = Sum_{j = 1..n} Product_{primes p | j} delta(n mod p,0) where delta is the Kronecker delta. - Robert Israel, Feb 09 2015
a(n) = Sum_{1<=k<=n,(n,k)=1} mu(k)*floor(n/k). - Benoit Cloitre, May 07 2016
a(n) = Sum_{k=1..n} floor(n^k/k)-floor((n^k -1)/k). - Anthony Browne, May 28 2016

Extensions

Definition made more precise at the suggestion of Wolfdieter Lang